

SEMESTER 3

Department of Microbiology, Cell Biology (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 2 nd Yr., 1 st Sem
Course Title:Cell Biology (Theory)	Subject Code:TIU-PMB-T211
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand Membrane and Cellular Structures
- 2. Analyze Cell Cycle and Signaling Mechanisms
- 3. Evaluate Gene Expression and Its Regulation

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Describe membrane structure and transport mechanisms	K1
CO-2:	Illustrate the structure and function of cell organelles	K2
CO-3:	Demonstrate knowledge of cell cycle regulation	K3
CO-4:	Analyze cellular signaling pathways	
CO-5:	Assess transcriptional and translational control of gene K5	
CO-6:	Apply chromatin modification concepts to gene expression and silencing K6	

MODULE 1: Membrane	9 Hours	
Structure of model membrane, lipid bilayer and membrane protein diffusion,	osmosis, ion	
channels, active transport, membrane pumps, mechanism of sorting and	regulation of	
intracellular transport, electrical properties of membranes		

MODULE 2:	Cell Organelles	9 Hours		
Cell wall, nucleus, mitochondria, Golgi bodies, lysosomes, endoplasmic reticulum, peroxisomes, plastids, vacuoles, structure & function of cytoskeleton and its role in motility				
MODULE 3: Cell cycle 9 Hours				
	ulation and control of cell cycle	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
MODULE 4:	Cell signaling	9 Hours		
Cell signaling through G-protein coupled receptors. Receptor Tyrosinekinase, Apoptosis				
MODULE 5:	Gene expression	9 Hours		
Control of gene expression at transcription and translation level: regulating the expression of				
phages, viruses, prokaryotic and eukaryotic genes, role of chromatin in gene expression and				
gene silencing				
TOTAL LECTURES 45 Hours				

Books:

1. Genomics and Genetic Engineering By Satya; Pratik New India Publishing Agency (2007)

2. S.B. Primrose, R.M. Twyman and R.W.Old; Principles of Gene Manipulation. 6th Edition, S.B.University Press, 2001.

3. J. Sambrook and D.W. Russel; Molecular Cloning: A Laboratory Manual, Vols 1-3, CSHL, 2001.

4. Brown TA, Genomes, 3rd ed. Garland Science 2006

5. Technical Literature from Stratagene, Promega, Novagen, New England Biolab etc

Department of Microbiology, Biological Method (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 2 nd Yr., 3 rd Sem
Course Title:Biological Method (Theory)	Subject Code:TIU-PMB-T213
Contact Hours/Week : 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand Techniques for Isolation and Analysis of Macromolecules
- 2. Develop Skills in Molecular Cloning, Expression, and Mutagenesis
- 3. Explore Advanced Sequencing and Genomic Applications

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explain macromolecule isolation techniques	
CO-2:	Demonstrate gel electrophoresis techniques for molecular analysis K3	
CO-3:	Construct recombinant DNA using molecular cloning techniques K3	
CO-4:	Analyze recombinant protein expression and genomic library construction	K4
CO-5:	Assess the impact of gene mutagenesis and knockout studies	K5
CO-6:	Apply genome sequencing and transgenic technologies in research	K6

MODULE 1:	Isolation and purification of Macromolecules	7 Hours
Isolation and purification of RNA, DNA (genomic and plasmid) and proteins		
MODULE 2:	Analysis of Macromolecules	7 Hours
Different separ	ration methods. Analysis of RNA, DNA and proteins by one and two	o dimensional
gel electropho	resis, Isoelectric focusing gels	
MODULE 3:	Cloning	7 Hours
Molecular clor	ning of DNA or RNA fragments in bacterial and eukaryotic systems	
MODULE 4:	Expression	8 Hours
-	recombinant proteins using bacterial, animal and plant vector	s.Isolation of
specific nuclei	c acid sequences. Generation of genomic and cDNA libraries in pl	s.Isolation of
specific nuclei		s.Isolation of
specific nuclei cosmid, BAC	c acid sequences. Generation of genomic and cDNA libraries in pl and YAC vectors.	s.Isolation of asmid, phage,
specific nuclei	c acid sequences. Generation of genomic and cDNA libraries in pl	s.Isolation of
specific nuclei cosmid, BAC MODULE 5:	c acid sequences. Generation of genomic and cDNA libraries in pl and YAC vectors.	rs.Isolation of asmid, phage, 8 Hours
specific nuclei cosmid, BAC a MODULE 5: In vitro muta	c acid sequences. Generation of genomic and cDNA libraries in pl and YAC vectors. Mutagenesis	rs.Isolation of asmid, phage, 8 Hours nd eukaryotic
specific nuclei cosmid, BAC a MODULE 5: In vitro muta	c acid sequences. Generation of genomic and cDNA libraries in pl and YAC vectors. Mutagenesis genesis and deletion techniques, gene knock out in bacterial an	rs.Isolation of asmid, phage, 8 Hours nd eukaryotic
specific nuclei cosmid, BAC a MODULE 5: In vitro muta	c acid sequences. Generation of genomic and cDNA libraries in pl and YAC vectors. Mutagenesis genesis and deletion techniques, gene knock out in bacterial an	rs.Isolation of asmid, phage, 8 Hours nd eukaryotic

Protein sequencing methods, detection of post translation modification of proteins. DNA sequencing methods, strategies for genome sequencing. Tissue and cell culture methods for plants and animals. Transgenic animals and plants

TOTAL LECTURES

45 Hours

Books:

- 1. Genes VIII: Benjamin Lewin
- 2. Molecular Biology of Gene: Watson et al. Cell & Molecular Biology: Lodish et al.
- 3. Molecular Biology of cell Bruce Alberts et al., Garland Publications Sambrooket al (2000)
- 4. Molecular Cloning Volumes I, II, & III Cold spring Harbor Laboratory Press, New York, US

Department of Microbiology, Immunology and Cancer (Theory)

Program:M. Sc. in Microbiology	Year, Semester: 2 nd Yr., 3 rd Sem
Course Title: Immunology and Cancer (Theory)	Subject Code:TIU-PMB-T215
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the Fundamental Concepts of Immunology
- 2. Analyze Immune System Functions and Dysfunctions
- 3. Apply Immunological Techniques in Research and Medicine

COURSE OUTCOME:

CO-1:	Explain the structure and functions of immunoglobulins	K1
CO-2:	Demonstrate the process of B and T cell maturation, activation, and differentiation K3	
CO-3:	Analyze the functions of cytokines in immune responses H	
CO-4:	Assess the causes and effects of autoimmunity and K5 immunodeficiency diseases	
CO-5:	Investigate cancer immunology and transplantation immunology K2	

CO-6:	Develop monoclonal and polyclonal antibodies for therapeutic	K6
CO-0.	applications	KU

MODULE 1:	Immunoglobins	6Hours
Immunoglobins, organization and expressions of Ig genes		
MODULE 2:	B cell	6 Hours
B cell maturat	ion, activation and differentiation; MHC/HLA; antigen processing an	d
presentation		
1		
MODULE 3:	T cells	6Hours
T cells, T cell	receptors, Tcell maturation, activation and differentiation	
MODULE 4:	Cytokines	7Hours
Cytokines; cell mediated and humoral effector responses		
	<u> </u>	
MODULE 5:	Autoimmunity	6 Hours
Autoimmunity, immunodeficiency diseases		
MODULE 6:	Cancer	7 Hours
Transplantation immunology, Cancer and immune system		
MODULE 7:	Antibodies	7 Hours
	nd polyclonal antibodies, monoclonal antibody technique	
TOTAL LECT	URES	45 Hours

Books:

1. Kuby Immunology

Department of Microbiology, DNA Metabolism and Gene regulation (Theory)

Program:M. Sc. in Microbiology	Year, Semester: 2 nd Yr., 3 rd Sem
Course Title: DNA Metabolism and Gene regulation (Theory)	Subject Code:TIU-PMB-T221
Contact Hours/Week : 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Master the Mechanisms of DNA Replication and Repair
- 2. Analyze Transcriptional Processes and RNA Processing
- 3. Evaluate the Processes of Translation and Gene Expression Regulation

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Describe the Mechanisms of DNA Replication and Repair	K2
CO-2:	Analyze DNA Damage and Recombination Processes	K4
CO-3:	Interpret Transcription Initiation and RNA Processing	K4
CO-4:	Evaluate Ribosomal Function and Translational Mechanisms	K5
CO-5:	Apply Knowledge of Translational Inhibition and tRNA Identity	К3
CO-6:	Design Strategies for Regulating Gene Expression	K6

MODULE 1: Replication	15 Hours				
Unit of replication, enzymes involved, replication origin and replication for replication, extrachromosomal replicons, DNA damage and repair homologous and site-specific recombination	k, fidelity of mechanisms,				
MODULE 2: Transcription	10 Hours				
Transcription factors and machinery, formation of initiation complex, transcription activator and repressor, RNA polymerases, capping, elongation, and termination, RNA processing, RNA editing, splicing, and polyadenylation, structure and function of different types of RNA, RNA transport					
MODULE 3: Translation	10 Hours				
Ribosome, formation of initiation complex, initiation factors and their regulation, e					
elongation factors, termination, genetic code, aminoacylation of tRNA, the	0				
aminoacyl tRNA synthetase, and translational proof-reading,	•				
inhibitors, Post- translational modification of proteins.					

MODULE 4: Gene expression

Control of gene expression at transcription and translation level: regulating the expression of phages, viruses, prokaryotic and eukaryotic genes

TOTAL LECTURES

Books:

- 1. Genes VIII: Benjamin Lewin
- 2. Molecular Biology of Gene: Watson et al.
- 3. Cell & Molecular Biology: Lodish et al.
- 4. Molecular Biology of cell Bruce Alberts et al., Garland Publications Sambrooket al (2000)
- 5. Molecular Cloning Volumes I, II, & III Cold spring Harbor Laboratory Press, New York, US

Department of Microbiology, Medical and Diagnostic Technology (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 2 nd Yr., 3 rd Sem		
Course Title: Medical and Diagnostic Technology (Theory)	Subject Code:TIU-PMB-T219		
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3		

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand Automation and Modern Diagnostic Techniques in Microbiology
- 2. Analyze Emerging Infectious Diseases and Detection Methods
- 3. Examine Bioterrorism and Culture Techniques for Pathogen Identification

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explain automation in microbiology and immunoprophylaxis	K1
CO-2:	Demonstrate molecular and serological detection methods	K3
CO-3:	Identify and assess emerging infectious diseases	K2
CO-4:	Evaluate the threat of bioterrorism and proper specimen collection techniques	K5
CO-5:	Apply culture techniques for pathogen isolation from clinical samples	К3

10 Hours

45 Hours

CO-6:	Analyze	ribotyping	and	its	application	in	microbial	K/
00-0.	identifica	ition						N4

	Automation	15 Hours				
Automation in	Microbiology, Immunoprophylaxis against diseases					
MODULE 2:	Emerging infectious diseases	10 Hours				
Emerging infe	ctious diseases and detection by modern techniques like ELISA, RIA	1 ,				
Histochemistry	v, RFLP, RAPD, Mantu, Microarray, PCR etc					
MODULE 3:	Bioterrorism	10 Hours				
Bioterrorism, Collection of specimens for bacteriological investigations						
	Methods of culture	10 Цента				
MODULE 4:	Methods of culture	10 Hours				
	lture, techniques and organisms encountered in: CSF, blood culture, II, endocarditis, Bone and joint infections. Ribotyping	, sputum, pus,				
TOTAL LECT	UDEC	45 Hours				

Books:

- 1. Bailey and Scott's Diagnostic Microbiology. 9th ed. St. Louis: C.V. Mosby, 2003.
- 2. Koneman, E.W., S.O. Allen, P.C. Schreckenberg, and W.C. Winn, eds.
- 3. Atlas and Textbook of Diagnostic Microbiology. 4th ed. Philadelphia: J.B. Lippincott, 1992.
- 4. Murray, P.R, E.J. Baron, M.A. Pfaller, P.C. Tenover, and R.H. Yolken, eds.
- 5. Manual of Clinical Microbiology. 6th ed. Washington DC: American Society for Microbiology, 2005.

Department of Microbiology, CASD

Program:M. Sc. in Microbiology	Year, Semester: 2 nd Yr., 3 rd Sem		
Course Title:CASD	Subject Code:TIU-PMB-S201		

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the Fundamentals of LaTeX
- 2. Apply LaTeX for Technical and Academic Writing
- 3. Enhance Document Presentation with Advanced Features

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explain the structure and workflow of LaTeX	K1		
CO-2:	CO-2: Format structured documents efficiently			
CO-3:	CO-3: Typeset mathematical equations and symbols			
CO-4:	Design tables, figures, and references effectively	K4		
CO-5:	Optimize document styling with advanced LaTeX features	K5		
CO-6:	Develop professional research papers and presentations	K6		

COURSE CONTENT:

MODULE 1: LATEX	45 Hours
Technical training based on LATEX	
TOTAL LECTURES	45 Hours

Department of Microbiology, Cell Biology (Practical)

Program: M. Sc. in Microbiology	Year, Semester: 2 nd Yr., 3 rd Sem		
Course Title:Cell Biology (Practical)	Subject Code:TIU-PMB-L211		
Contact Hours/Week : 0–0–2 (L–T–P)	Credit: 2		

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand Cell Culture and Microscopy Techniques
- 2. Apply Cell Viability and Functional Assays
- 3. Analyze Cellular Responses Using Advanced Techniques

COURSE OUTCOME:

CO-1:	Describe	fundamental	cellular	structures	and	microscopy	K 1
0.0-1.	techniques	5					KI

CO-2:	Demonstrate aseptic techniques for cell culture	K3
CO-3:	Conduct cell viability assays (MTT assay, Acridine Orange/EtBr staining)	К3
CO-4:	Analyze oxidative stress and membrane permeability using flow cytometry	K4
CO-5:	Interpret fluorescence microscopy results for cell viability	K5
CO-6:	Apply cellular techniques in biomedical and toxicological research	K6

MODU	JLE 1:	Study of cells	30 Hours
1.	Micros	copic observation of cellular structure.	
2.	Cell cu	lture techniques	
3.	Cell via	ability test-MTT assay	
4.	Cell pe	rmeability and ROS generation by Flow cytometry study	
5.	Fluores	cence microscopic study of cell viability by Acridine orange EtBr st	aining
ТОТА	L LECT	URES	30 Hours
IUIA			50 110413

Department of Microbiology, MolecularBiology (Practical)

Program: M. Sc. in Microbiology	Year, Semester: 2 nd Yr., 3 rd Sem	
Course Title: Molecular Biology (Practical)	Subject Code:TIU-PMB-L223	
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 2	

COURSE OBJECTIVE:

Enable the student to:

- 1. Develop a Theoretical and Practical Understanding of DNA Isolation Techniques
- 2. Acquire Proficiency in Molecular Cloning Procedures
- 3. Integrate and Analyze Molecular Techniques for Genetic Experimentation

COURSE OUTCOME:

CO-1:	Describe the Principles of DNA Isolation from Bacteria	K2
CO-2:	Perform and Compare DNA Isolation Techniques	K3
CO-3:	Prepare Competent Bacterial Cells	K3

CO-4:	CO-4: Execute Bacterial Transformation Protocols	
CO-5:	Conduct Restriction Digestion of DNA Samples	K3
CO-6:	Analyze DNA Fragments Using Agarose Gel Electrophoresis	K4

MODULE 1:	Study of different molecular characteristics of cell	30 Hours
I. DNA 19	solation from bacteria	
2. Plasmi	d DNA isolation from bacteria.	
3. Compe	tent cell preparation	
4. Transfe	ormation	
5. Restric	tion digestion	
6. Agaros	e gel electrophoresis	
TOTAL LECT	URES	30 Hours**

Department of Microbiology, Medical and Diagnostic Micro Bio (Practical)

Program: M. Sc. in Microbiology	Year, Semester: 2 nd Yr., 3 rd Sem
Course Title: Medical and Diagnostic Micro Bio (Practical)	Subject Code:TIU-PMB-L203
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand Molecular and Immunological Techniques
- 2. Apply Hematological and Immunological Methods in Laboratory Analysis
- 3. Analyze and Interpret Results from Molecular and Immunodiagnostic Techniques

COURSE OUTCOME:

CO-1:	Explain the principles of molecular and immunological techniques	K1
CO-2:	Perform manual WBC counting using a hemocytometer	K3
CO-3:	Determine the blood group of an individual using standard protocols	К3
CO-4:	Demonstrate immunoelectrophoresis and immunodiffusion techniques	К3

CO-5:	Analyze	experimental	results	from	electrophoretic	and	K4
	immunolo	gical tests					K 4
CO-6:	CO-6: Evaluate the role of these techniques in research and diagnostics				K5		

MODULE 1:	DULE 1: Study of different molecular techniques			
1.	PCR			
2.	Manual count of white blood cell (WBC's) using a hemocytometer			
3.	Determination of the blood group of an individual			
4.	Techniques of immunoelectrophoresis(SDS PAGE)			
5.	Oucterlony double diffusion technique.			
6.	Precipitation techniques: immunodiffusion			
7.	Immuno-electrophoretic method (Western Blot)			
TOTAL LECTURES				

Department of Microbiology, Entrepreneurship Skill Development (ESD)

Program: M. Sc. in Microbiology	Year, Semester: 2 nd Yr., 3 rd Sem
Course Title: Entrepreneurship Skill Development (ESD)	Subject Code:TIU-PES-S297
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand Entrepreneurial Concepts
- 2. Enhance Business Planning and Management Skills
- 3. Develop Innovation and Problem-Solving Abilities

COURSE OUTCOME:

CO-1:	Explain key entrepreneurial concepts	
CO-2: Identify and evaluate business opportunities		K4
CO-3:	Demonstrate business planning skills	K3
CO-4: Assess financial and resource management strategies		K5
CO-5:	Develop innovative solutions to entrepreneurial challenges	K6

CO-6:	Apply leadership and decision-making skills	K3

MODULE 1:	Entrepreneurship Skills	30 Hours		
Development of Entrepreneurship Skills				
TOTAL LECTURES		30 Hours		