

SEMESTER 2

Department of Microbiology, Basic of Pathology (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 1 st Yr., 2 nd Sem	
Course Title:Basic of Pathology (Theory)	Subject Code:TIU-PMB-T112	
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3	

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand Human and Plant-Microbe Interactions
- 2. Analyze Antibacterial Agents and Drug Resistance
- 3. Apply Hematological Techniques in Laboratory Practice

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Describe the normal flora of the human body	K1
CO-2:	Classify bacterial toxins and their mechanisms	K2
CO-3:	Evaluate methods of bacterial control and drug resistance	K5
CO-4:	Analyze plant responses to biotic and abiotic stress	K4
CO-5:	Demonstrate hematology techniques in clinical settings	K3
CO-6:	Explain blood circulation and immune mechanisms	K2

MODULE 1:	Flora of human body	9 Hours
Normal flora o	f human body, Bacterial toxins, toxicity and pathogenesis	
MODULE 2:	Antibacterial substances	9 Hours
Antibacterial	substances and drug resistance: Control of bacterial growth -	physical and
chemical agen	ts, preservation methods, stress responses	
C		

MODULE 3:	Host-parasite relationship	9 Hours
Host-parasite relationship: Host range of pathogens, Koch's postulate and phenomenon; normal flora, parasitism and pathogenicity, routes of infection, virulence factor and chemical mediators, toxicity and pathogenesis		
MODULE 4:	Plant pathology	9 Hours
Plant patholog	Plant pathology – Responses of plants to biotic (pathogen and insects) and abiotic (water,	
temperature an	d salt) stresses	
MODULE 5:	Hematology	9 Hours
	logy, laboratory organization and safety measures and waste s, sample collection techniques, preservation, transport and handling	management.
MODULE 6:	Blood and circulation	9 Hours
Blood and circulation - Blood corpuscles, haemopoiesis and formed elements, plasma function,		
blood volume, blood volume regulation, blood groups, haemoglobin, immunity, haemostasis		
TOTAL LECT	URES	45 Hours

Books:

1. Kuby, RA Goldsby, Thomas J. Kindt, Barbara, A. Osborne Immunology, 6th Edition, Freeman, 2002.

2. Brostoff J, Seaddin JK, Male D, Roitt IM., Clinical Immunology, 6th Edition, Gower Medical Publishing, 2002.

3. Janeway et al., Immunobiology, 4th Edition, Current Biology publications, 1999.

4. Fundamental of Immunology, 4th edition, Lippencott Raven, 1999

Department of Microbiology, Environment and Food Microbiology (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 1 st Yr., 2 nd Sem
Course Title: Environment and Food Microbiology (Theory)	Subject Code:TIU-PMB-T114
Contact Hours/Week : 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand Ecological Interactions and Ecosystem Dynamics
- 2. Analyze Biodiversity and Conservation Strategies
- 3. Apply Microbiological Principles in Food Safety and Fermentation

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Describe ecological and environmental factors	K1
CO-2:	Classify ecosystem components and energy flow	K4
CO-3:	Assess biodiversity conservation approaches	K5
CO-4:	Explain food spoilage and preservation methods	K2
CO-5:	Demonstrate microbial roles in food fermentation	K3
CO-6:	Analyze foodborne pathogens and diseases	K4

MODULE 1:	Environmental complex	5 Hours	
Environmental	Environmental complex, interaction of ecological factors: light, temperature, precipitation		
(rainfall), hum	idity of air, atmospheric gases and wind; topographical factors; edap	bhic factors	
MODULE 2:	Ecosystem	5 Hours	
Ecosystem ma	nagement. Concept of ecosystem and ecosystem management, troph	ic structure of	
the ecosystem;	ecotones and edges; ecosystem diversity; classification of ecosyst	ems; stability	
of ecosystem;	examples of ecosystem: A pond; agroecosystem. Energy flow throug	gh ecosystem,	
energy environ		-	
MODULE 2.	Due du stivitu	C Hauna	
MODULE 3:	Productivity ductivity; energy partitioning in food chain and food webs	5 Hours	
Concept of pro	ductivity; energy partitioning in food chain and food webs		
MODULE 4:	Population	5 Hours	
	operties, density dependent and density independent mechanism		
	ncept of habitat and niche, r and k selection		
MODULE 5:	Biodiversity	5 Hours	
Types of interactions between two species; co-evolution.Biodiversity			
MODULE 6:	Conservation	5 Hours	
Principles of	conservation, major approaches to management, Indian case	e studies on	
conservation/n	nanagement strategy.		
	Spoilage and Preservation of food		

Microorganisms associated with food (milk, meat, fish, cereals, vegetables and fruits). Spoilage of foods, maintenance of food sterility and preservatives. Food preservation methods: physical, synthetic, natural and biological.

MODULE 8: Food processing

5 Hours

Hours

Microbial food processing: role of indicating microorganisms like lactic acid and other bacteria yeast and molds. Starter cultures. Lactic acid, bacterocins and other metabolites, their applications

MODULE 9: Fermented food

Fermented food: Production and beneficial effects. Food deterioration by mycotoxins. Characteristics of food borne diseases caused by Clostridium, E. coli, Listeria, Salmonella, Shigella 45 Hours**

TOTAL LECTURES

Books:

- 1. Microbiology: Michael Pelczar, E.C.S Chan, Noel R. Krieg; Tata McGraw Hill Education (2001); 5th Edition.
- 2. General Microbiology: Author: Hans Gunter-schlegel, Schlegel Hans Gunter, Hans Gunter
- 3. Schlegel; Cambridge University Press (1993); 7th Revised Edition Topley and Wilson's Principles of Bacteriology; Virology; and Immunity Graham Wilson.

Department of Microbiology, Biological evolution (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 1 st Yr., 2 nd Sem	
Course Title:Biological evolution (Theory)	Subject Code:TIU-PMB-T122	
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3	

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the Foundations of Evolutionary Theory
- 2. Explore the Molecular and Genetic Basis of Evolution
- 3. Apply Evolutionary Concepts to Biodiversity and Adaptation

COURSE OUTCOME:

1	· · · · · · · · · · · · · · · · · · ·	
CO-1:	Explain major evolutionary theories	K1
CO-2:	Analyze the origin of life and unicellular evolution	K4
CO-3:	Describe the evolutionary timeline and fossil record	K1
CO-4:	Apply molecular evolution concepts	K3
CO-5:	Evaluate mechanisms of evolutionary change	K5
CO-6:	Investigate patterns of adaptation and co-evolution	K6

On completion of the course, the student will be able to:

MODULE 1:	Introduction	7 Hours
Emergence of	evolutionary thoughts	
MODULE 2:	Theory	7 Hours
Lamarck; Dar	win-concepts of variation, adaptation, struggle, fitness and natu	ral selection;
Mendelism; Sp	pontaneity of mutations; The evolutionary synthesis	
MODULE 3:	Origin of cells	7 Hours
Origin of cells of organic mo (1953); The f	and unicellular evolution: Origin of basic biological molecules; Ab nomers and polymers; Concept of Oparin and Haldane; Experien first cell; Evolution of prokaryotes; Origin of eukaryotic cells; taryotes; Anaerobic metabolism, photosynthesis and aerobic metabol	iotic synthesis nent of Miller Evolution of
Major events i	Evolutionary History and Evolutionary History: The evolutionary time scale; Eras, perior n the evolutionary time scale; Origins of unicellular and multi cellul of plants and animals; Stages in primate evolution including Homo.	1 '
v v 1	Molecular Evolution	8 Hours
clocks; Molecu	Jution: Concepts of neutral evolution, molecular divergence and mol lar tools in phylogeny, classification and identification; Protein and lar sis; origin of new genes and proteins; Gene duplication and divergen	nucleotide
MODULE 6:	Mechanisms	8 Hours
Weinberg Law migration and	sms: Population genetics – Populations, Gene pool, Gene frequev; concepts and rate of change in gene frequency through naturandom genetic drift; Adaptive radiation; Isolating mechanisms and Sympatricity; Convergent evolution; Sexual selection; Co-evolution	aral selection, s; Speciation;
TOTAL LECT	URES	45 Hours

Books:

- 1. Microbiology: Michael Pelczar, E.C.S Chan, Noel R. Krieg; Tata McGraw Hill Education (2001); 5th Edition.
- 2. General Microbiology: Author: Hans Gunter-schlegel, Schlegel Hans Gunter, Hans Gunter
- 3. Schlegel; Cambridge University Press (1993); 7th Revised Edition Topley and Wilson's Principles of Bacteriology; Virology; and Immunity Graham Wilson.

Department of Microbiology, Biostatistics and Bioinformatics (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 1 st Yr., 2 nd Sem
Course Title: Biostatistics and Bioinformatics (Theory)	Subject Code:TIU-PMB-T120
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand Statistical and Bioinformatics Principles
- 2. Develop Data Analysis and Computational Skills
- 3. Analyze Gene Regulatory and Computational Models

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explain measures of central tendency and probability distributions	K1
CO-2: Perform hypothesis testing and statistical analysis		K3
CO-3:	Interpret bioinformatics algorithms for sequence analysis	K3
CO-4:	Apply molecular phylogeny techniques	K3
CO-5:	Evaluate gene regulatory networks and computational models	K5
CO-6:	Develop skills in ligand-protein interaction studies	K6

MODULE 1:	Measures of central tendency	7 Hours

normal)		
MODULE 2:	Sampling	8 Hours
Sampling dist	ibution; Difference between parametric and non-parametric stati	stics; Confidence
Interval; Error	s;Levels of significance; Regression and Correlation; t-test; Ana	alysisof variance;
X2 test		
MODULE 3:	Statistics	7 Hours
Basic introduc	tion toMuetrovariate statistics, etc	
MODULE 4:	Bioinformatics	7 Hours
Biological seq	uence database.Sequence comparison, pairwise alignment, multip	ole alignment
MODULE 5:	Database	8 Hours
Mutation matr	ix and its application. Database searching, algorithms of FASTA	and BLAST
MODULE 6:	Molecular phylogeny	8 Hours
Basic molecul	ar phylogeny. Ligand protein interaction	
MODULE 7:	Gene regulatory networks	5 Hours
Gene regulato	ry networks : Dynamic nature of E. coli genome, Transcription	nal network in S.
cerevisiae, Ma	thematical modeling and computer simulation	
TOTAL LECT	URES	45 Hours**

Measures of central tendency and dispersal; probability distributions (Binomial, Poisson and

Books:

- 1. Basotia, G.R. and K.K. Sharma. Research Methodology. Chaudhary, C.H. Research Methodology. RBSA Publications. Daniell, W. Elements of Biostatistics in Health Sciences.
- 2. Singh, S et al. Statistical Methods for Research. Ludhiana: Central Publishing. Enhance, D.N. Fundamentals of Statistics.
- 3. Gupta, S.P. Statistical Methods. New Delhi: S. Chand.
- 4. Khan and Khanna. Fundamentals of Biostatistics. Ukaz Publication Zerold and Jar. Biostatistical Analysis.
- 5. Bioinformatics: Sequence and Genome Analysis, Second Edition (2004) D. Mount, Cold Spring Harbor Laboratory Press, New York

Department of Microbiology, Career Advancement Skill Development (CASD)

Program: M. Sc. in Microbiology	Year, Semester: 1 st Yr., 2 nd Sem	
Course Title: Career Advancement Skill Development (CASD)	Subject Code: TIU-PMB-S100	
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3	

COURSE OBJECTIVE:

Enable the student to:

- 1. Develop Effective Communication Skills
- 2. Enhance Linguistic Proficiency
- 3. Improve Professional and Academic Writing

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explain fundamental concepts of communication	K1
CO-2:	Analyze the role of language in communication	K4
CO-3:	Use appropriate language in different contexts	K3
CO-4:	Demonstrate proficiency in professional writing	K6
CO-5:	Evaluate different writing styles	K5
CO-6:	Enhance clarity and coherence in writing	K3

COURSE CONTENT:

MODULE 1: Concepts	17 Hours
Concepts in Communication: Communication as sharing; context of commu speaker/writer and the listener/reader; medium of communication; barriers to co accuracy, brevity, clarity and appropriateness in communication; Non- Paralanguage and Body language	ommunication;
MODULE 2: Semantics	14 Hours
Semantics: A selected list of Synonyms, Antonyms, Homophones and Homonyms. Form and function of words. Syntax: Sentence structures, Verb patterns and their usage	

MODULE 3: Writing Skills

14 Hours

Writing Skills: Types of writing (Expository, Descriptive, Analytic, Argumentative, Narrative etc) and their main features. Resumes and CV's and Cover letters. Memos and Notices. Basics of Formal Reports

TOTAL LECTURES

45 Hours

Department of Microbiology, Pathology (Practical)

Program: B. Sc. in Microbiology	Year, Semester: 1 st Yr., 2 nd Sem	
Course Title:Pathology (Practical)	Subject Code:TIU-PMB-L112	
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 1	

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand Antimicrobial Susceptibility Testing
- 2. Develop Skills in Microbial Interaction and Biofilm Studies
- 3. Analyze the Kinetics of Bacterial Death and Antimicrobial Action

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explain the principles of antimicrobial testing	K1
CO-2:	Perform MIC and MBC determination assays	K3
CO-3:	Evaluate bacterial death kinetics	K4
CO-4:	Conduct disk diffusion and cross-streak antagonism assays	K3
CO-5:	Investigate biofilm formation mechanisms	K5
CO-6:	Develop strategies for biofilm inhibition	K6

MODULE 1:	Study of microbial pathogenicity	30 Hours
-----------	----------------------------------	----------

 Determination of MIC Determination of MBC and tolerance of an antibacterial agent Death kinetic assay Disk diffusion assay Antagonistic activity of bacteria against fungi by Cross streak method Biofilm formation Biofilm inhibition by antibiofilm agent 	
TOTAL LECTURES	30 Hours

Department of Microbiology, Environmental and Food Microbiology(Practical)

Program: B. Sc. in Microbiology	Year, Semester: 1 st Yr., 2 nd Sem
Course Title: Environmental and Food Microbiology (Practical)	Subject Code:TIU-PMB-L114
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Develop Practical Skills in Microbial Analysis
- 2. Analyze Environmental and Agricultural Microbiology
- 3. Evaluate Microbial Contributions to Food and Health

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explain water quality assessment techniques	K1
CO-2:	Perform soil microbial isolation and characterization	K3
CO-3:	Demonstrate microbial-based composting technique	K3
CO-4:	Analyze probiotic characteristics of lactic acid bacteria	K3
CO-5:	Assess microbial enzyme activity in dairy products	K5
CO-6:	Apply microbial techniques in food preservation	K6

MODULE 1:	Study of microbial characteristics	30 Hours
-----------	------------------------------------	----------

- 1. Testing of water sample to determine microbial load in the different places of urban/ rural locality. Enumeration of coliform bacteria (total and fecal) of water through multiple tube fermentation technique (MPN).
- 2. Determination of Biochemical Oxygen Demand(BOD)
- 3. Identification of enteric bacilli by IMViC Test
- 4. Isolation of Phosphate solubilising bacteria from soil.
- 5. Isolation of free living Nitrogen fixing bacteria from soil
- 6. Production of vermicompost. Enumeration of microbes and level of N, P, & K before and after composting
- 7. Production and estimation of IAA from microorganism
- 8. Methylene Blue reductase test
- 9. Determination of phosphatase activity of milk.
- 10. Isolation of Lactic acid bacteria(LAB) from milk
- 11. Determination of probiotic activity of LAB: pH tolerance, aggregation, autoaggregation, coaggregation and hydrophobicity
- 12. Preservation of food by using preservative sodium benzoate

TOTAL LECTURES	30 Hours

Department of Microbiology, Entrepreneurship Skill Development (ESD)

Program: B. Sc. in Microbiology	Year, Semester: 1 st Yr., 2 nd Sem
Course Title:Entrepreneurship Skill Development (ESD)	Subject Code:TIU-PES-S198
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand Entrepreneurial Concepts
- 2. Enhance Business Planning and Management Skills
- 3. Develop Innovation and Problem-Solving Abilities

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explain key entrepreneurial concepts	K1
CO-2:	Identify and evaluate business opportunities	K4
CO-3:	Demonstrate business planning skills	K3
CO-4:	Assess financial and resource management strategies	K5

CO-5:	Develop innovative solutions to entrepreneurial challenges	K6
CO-6:	Apply leadership and decision-making skills	K3

COURSE CONTENT:

MODULE 1:	Entrepreneurship Skills	30 Hours
Development of	of Entrepreneurship Skills	
TOTAL LECT	URES	30 Hours

Department of Microbiology, Training and Seminar Presentation

Program: B. Sc. in Microbiology	Year, Semester: 1 st Yr., 2 nd Sem
Course Title: Training and Seminar Presentation)	Subject Code:TIU-PMB-S122
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Enhance Presentation and Communication Skills
- 2. Strengthen Research and Analytical Thinking
- 3. Develop Professional and Collaborative Competencies

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Explain key concepts in scientific communication	K2
CO-2:	Demonstrate proficiency in seminar presentation	K3
CO-3:	Analyze and critique research findings	K4
CO-4:	Develop well-structured reports and presentations	K6
CO-5:	Apply public speaking and interpersonal skills	K3
CO-6:	Assess the impact of audience interaction and feedback	K5

MODULE 1:	Working skills Skills	

Development of working skills

TOTAL LECTURES