

## **SEMESTER 1**

## Department of Microbiology, General Microbiology (Theory)

| Program:M. Sc. in Microbiology              | Year, Semester: 1 <sup>st</sup> Yr., 1 <sup>st</sup> Sem |
|---------------------------------------------|----------------------------------------------------------|
| Course Title: General Microbiology (Theory) | Subject Code:TIU-PMB-T101                                |
| Contact Hours/Week: 2–1–0 (L–T–P)           | Credit: 3                                                |

## **COURSE OBJECTIVE :**

Enable the student to:

- 1. To introduce the historical development of microbiology
- 2. To classify and understand various microorganisms
- 3. To explore microbial interactions with pollutants, water, and environmental contaminants

## **COURSE OUTCOME :**

On completion of the course, the student will be able to:

| CO-1: | Describe the historical development of microbiology           | K1 |
|-------|---------------------------------------------------------------|----|
| CO-2: | Explain the classification and nomenclature of microorganisms | K2 |
| CO-3: | Analyze the impact of environmental factors                   | K4 |
| CO-4: | Evaluate microbial roles in water microbiology                | K5 |
| CO-5: | Assess the significance of marine microbes                    | K5 |
| CO-6: | Develop biotechnological solutions using microbes             | K6 |

| MODULE<br>1:   | HISTORY OF MICROBIOLOGY | 3 Hours |
|----------------|-------------------------|---------|
| History of mic | robiology               |         |

| MODILLE                                                                                                                                              |                                                                                                                                                      |                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| MODULE<br>2:                                                                                                                                         | CLASSIFICATION                                                                                                                                       | <b>6</b> Hours                   |
| Nomenclature and classification of microorganisms. General account of Cyanobacteria                                                                  |                                                                                                                                                      |                                  |
|                                                                                                                                                      | I                                                                                                                                                    |                                  |
| MODULE<br>3.                                                                                                                                         | Extremophile                                                                                                                                         | 6Hours                           |
| Anaerobes, ha<br>and organizati<br>magnification                                                                                                     | lophiles, acidophile, alkalophile, tharmophile, barophile; Communon. Effect of heavy metal and xenobiotic substances on microbe of toxic substances. | nity structure<br>es; biological |
| MODILLE                                                                                                                                              | A • 1 • . 1                                                                                                                                          |                                  |
| MODULE<br>4:                                                                                                                                         | Aeromicrobiology                                                                                                                                     | <b>o</b> Hours                   |
| Microbes of intramural, cor                                                                                                                          | indoor and outdoor environment, pathways, enumeration, Extension, bioterrorism. Eutrophication, Biosafety.                                           | tramural and                     |
|                                                                                                                                                      |                                                                                                                                                      |                                  |
| MODULE<br>5:                                                                                                                                         | Water microbiology                                                                                                                                   | 6 Hours                          |
| Significance of                                                                                                                                      | f microbes in water quality. Test for portability of water. Microbial                                                                                | treatment of                     |
| sewage; applic                                                                                                                                       | ation of wastewater in land; composting of biosolids and domestic so                                                                                 | olid waste.                      |
|                                                                                                                                                      |                                                                                                                                                      |                                  |
| MODULE                                                                                                                                               | Marine microbes                                                                                                                                      | 6 Hours                          |
| 0:                                                                                                                                                   |                                                                                                                                                      |                                  |
| Marine microbes and their applications.                                                                                                              |                                                                                                                                                      |                                  |
|                                                                                                                                                      |                                                                                                                                                      |                                  |
| MODULE<br>7:                                                                                                                                         | Pollutants                                                                                                                                           | 6 Hours                          |
| Microorganism and metal pollutants; biodegradation of TNT, PCB; Bioremediation: bioventing, biofiltration, bioaugmentation, problems and advantages. |                                                                                                                                                      |                                  |
|                                                                                                                                                      |                                                                                                                                                      |                                  |
| MODULE<br>8:                                                                                                                                         | Bioleaching                                                                                                                                          | 6 Hours                          |
| Bioleaching: mineral extraction, oil recovery.                                                                                                       |                                                                                                                                                      |                                  |
| TOTAL LEC                                                                                                                                            | TURES                                                                                                                                                | 45 Hours                         |
|                                                                                                                                                      |                                                                                                                                                      |                                  |

**Books:** 

- 1. Topley and Wilson's Principles of Bacteriology; Virology; and Immunity
- 2. Graham Wilson, Williams & Wilkins, 7th edition (December 1983) Pelzer Microbiology
- 3. Prescott Microbiology

## Department of Microbiology, Bacterial physiology (Theory)

| Program:M. Sc. in Microbiology              | <b>Year, Semester:</b> 1 <sup>st</sup> Yr., 1 <sup>st</sup> Sem |
|---------------------------------------------|-----------------------------------------------------------------|
| Course Title: Bacterial physiology (Theory) | Subject Code:TIU-PMB-T113                                       |
| Contact Hours/Week: 2–1–0 (L–T–P)           | Credit: 3                                                       |

## **COURSE OBJECTIVE:**

Enable the student to:

- 1. To provide fundamental knowledge of bacterial characterization
- 2. To develop an understanding of bacterial cultivation techniques
- 3. To explore bacterial cell division mechanisms, ultra-structural features, and biosynthesis pathways

## **COURSE OUTCOME:**

On completion of the course, the student will be able to:

| CO-1: | Identify and describe bacterial characteristics      | K1 |
|-------|------------------------------------------------------|----|
| CO-2: | Differentiate bacterial growth requirements          | K2 |
| CO-3: | Demonstrate cultivation techniques                   | K3 |
| CO-4: | Analyze growth kinetics and cell division strategies | K4 |
| CO-5: | Evaluate bacterial cell structures                   | K5 |
| CO-6: | Design experimental approaches                       | K6 |

| MODULE | Characterization of bacteria | 9 Hours |
|--------|------------------------------|---------|
| 1:     |                              |         |

Characterization of bacteria: (i) morphological: shape, Gram stain, endo-spore stain, capsule stain, acid-fast stain, flagella stain; (ii) cultural: growth in different carbon sources (media); (iii) biochemical test: catalase, peroxidase, nitrate reduction, fermentation of sugar.

# MODULE<br/>2:Cultivation of bacteria9 Hours

Cultivation of bacteria: aerobic, anaerobic, and facultative. Pure culture and its characteristics. Nutritional types. Enrichment culture technique for specific bacterial types: endospore forming, nitrogen fixing, nitrifying, starch degrading, cellulose degrading, casein degrading, phosphate solubilizing. Unculturable and culturable bacteria- conventional, metagenomic approaches.

| MODULE | Strategies of cell division | 9 Hours |
|--------|-----------------------------|---------|
| 3:     |                             |         |

Strategies of cell division, growth kinetics, generation time, asynchronous, synchronous, batch, continuous culture, measurement of growth, and factors affecting growth. Mechanism of cell division.

| MODULE | Ultra-structure of bacteria | 9 Hours |
|--------|-----------------------------|---------|
| 4:     |                             |         |

Ultra-structure of bacteria: cytoplasmic and outer membrane, capsule, flagella, pilli, endospore, and special organelle. Gram-negative, Gram-positive, and acid-fast bacteria. Wall-deficient organisms, including L-form

| MODULE | Cell wall | 9 Hours |
|--------|-----------|---------|
| 5:     |           |         |
|        |           |         |

Cell wall synthesis, flagellar synthesis.

| TOTAL LECTURES | 45 Hours** |
|----------------|------------|
|                |            |

## **Books:**

- 1. Topley and Wilson's Principles of Bacteriology; Virology; and Immunity
- 2. Graham Wilson, Williams & Wilkins, 7th edition (December 1983) Pelzer Microbiology
- 3. Prescott Microbiology

## Department of Microbiology, Phycology, Mycology and Virology (Theory)

| Program: M. Sc. in Microbiology                                | Year, Semester: 1 <sup>st</sup> Yr., 1 <sup>st</sup> Sem |
|----------------------------------------------------------------|----------------------------------------------------------|
| <b>Course Title:</b> Phycology, Mycology and Virology (Theory) | Subject Code:TIU-PMB-T115                                |
| Contact Hours/Week: 2–1–0 (L–T–P)                              | Credit: 3                                                |

## **COURSE OBJECTIVE:**

Enable the student to:

- 1. Understanding Microbial Diversity and Applications
- 2. Pathological and Industrial Significance
- 3. Advanced Microbial Interactions and Biocontrol

## **COURSE OUTCOME:**

On completion of the course, the student will be able to:

| CO-1: | Comprehend Microbial Diversity.              | K2 |
|-------|----------------------------------------------|----|
| CO-2: | Analyze Beneficial Roles of Microorganisms   | K4 |
| CO-3: | Understand Microbial Pathogenesis            | K2 |
| CO-4: | Apply Disease Control Strategies             | K3 |
| CO-5: | Explore Special Microorganisms and Symbiosis | K5 |
| CO-6: | Develop Research and Practical Skills        | K5 |

| MODULE                                                                                                                                                 | Algae | 11 Hours |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| 1:                                                                                                                                                     |       |          |
| General account of algae, types of algae, Beneficial role of algae and pathologically important algae in bacteria, plant and animal, Anti algal agent. |       |          |
|                                                                                                                                                        |       |          |
| MODULE<br>2:                                                                                                                                           | Fungi | 11 Hours |
| General account of fungi, types of fungi, beneficial role of fungi and pathologically important fungi in bacteria, plant and animal, Antifungal agent  |       |          |
|                                                                                                                                                        |       |          |

| MODULE                                                                                                                                                             | Virus                 | 11 Hours   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|
| 3:                                                                                                                                                                 |                       |            |
| General account of Virus, types of Virus, Beneficial role of Virus-Phage Therapy and pathologically important virus in bacteria, plant and animal, Antiviral agent |                       |            |
|                                                                                                                                                                    |                       |            |
| MODULE<br>4:                                                                                                                                                       | Special microorganism | 12 Hours   |
| Mycorrhiza, Lichen, Virion, Viroid, prion                                                                                                                          |                       |            |
| TOTAL LECTURES                                                                                                                                                     |                       | 45 Hours** |

#### **Books:**

- 1. Arora, D.R. and Brij Bala Arora. Medical Mycology. New Delhi: CBS Publishers, 2013.
- 2. Alexopolous, J. and W. M. Charles. 1988. Introduction to Mycology. Wiley Eastern, New Delhi.
- 3. Mckane, L. and K. Judy.1996. Microbiology–Essentials and Applications. McGraw Hill,NewYork.
- 4. Pandey, B. P. 2001. College Botany, Vol. I: Algae, Fungi, Lichens, Bacteria, Viruses, Plant Pathology, Industrial Microbiology and Bryophyta. S. Chand & Company Ltd, New Delhi.
- 5. Pandey, B. P.2007. Botany for Degree Students: Diversity of Microbes, Cryptogams, Cell Biology and Genetics. S. Chand & Company Ltd, New Delhi.
- 6. Sambamurthy, A. V. S. S.2006. A Textbook of Plant Pathology. I.K. International Pvt. Ltd., New Delhi.
- Sambamurthy, A. V. S. S.2006. A Textbook of Algae. I. K. International Pvt. Ltd., New Delhi. Sharma, O. P.1992. Textbook of Thallophyta. McGraw Hill Publihing Co., New Delhi.

## Department of Microbiology, Biochemistry (Theory)

| Program: M. Sc. in Microbiology                                | Year, Semester: 1 <sup>st</sup> Yr., 1 <sup>st</sup> Sem |  |
|----------------------------------------------------------------|----------------------------------------------------------|--|
| <b>Course Title:</b> Phycology, Mycology and Virology (Theory) | Subject Code: TIU-PMB-T107                               |  |
| Contact Hours/Week: 2–1–0 (L–T–P)                              | Credit: 3                                                |  |

## **COURSE OBJECTIVE:**

Enable the student to:

1. Understand the Fundamentals of Biochemistry

- 2. Explore Biomolecular Composition and Functions
- 3. Develop Insights into Bioenergetics and Enzyme Kinetics

## **COURSE OUTCOME:**

On completion of the course, the student will be able to:

| CO-1: | Explain the Fundamental Principles of Biochemistry                   |    |
|-------|----------------------------------------------------------------------|----|
| CO-2: | Analyze the Properties and Functions of Biomolecules                 |    |
| CO-3: | Apply Biophysical and Chemical Principles in Biological<br>Processes | K3 |
| CO-4: | Evaluate Enzyme Mechanisms and Kinetics                              | K5 |
| CO-5: | Illustrate Energy Metabolism and Bioenergetics Pathways              |    |
| CO-6: | Demonstrate Problem-Solving Skills in Biochemistry                   |    |

| MODULE                                                                                                            | Atoms                                                       | 7 Hours     |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|
| 1:                                                                                                                |                                                             |             |
| Structure of ato                                                                                                  | oms, molecules and chemical bonds.                          |             |
|                                                                                                                   |                                                             |             |
| MODULE<br>2:                                                                                                      | Principles of Biophysical Chemistry                         | 7 Hours     |
| Principles of biophysical chemistry (pH, buffer, reaction kinetics, thermodynamics, colligative properties)       |                                                             |             |
|                                                                                                                   |                                                             |             |
| MODULE<br>3:                                                                                                      | Biomolecules                                                | 7 Hours     |
| Composition, structure and function of biomolecules (carbohydrates, lipids, proteins, nucleic acids and vitamins) |                                                             |             |
|                                                                                                                   |                                                             |             |
| MODULE<br>4:                                                                                                      | Stabilizing Interactions                                    | 7 Hours     |
| Stabilizing in interaction, etc                                                                                   | teractions (Van der Waals, electrostatic, hydrogen bonding, | hydrophobic |
|                                                                                                                   |                                                             |             |
| MODULE<br>5:                                                                                                      | Stabilizing Interactions                                    | 7 Hours     |

| Principles of catalysis, enzymes and enzyme kinetics, enzyme regulation, mechanism of enzyme catalysis, isozymes |                          |            |
|------------------------------------------------------------------------------------------------------------------|--------------------------|------------|
|                                                                                                                  |                          |            |
| MODULE                                                                                                           | Stabilizing Interactions | 10 Hours   |
| 6:                                                                                                               |                          |            |
| Bioenergetics, glycolysis, TCA, oxidative phosphorylation, coupled reaction,                                     |                          |            |
| group transfer, biological energy transducers                                                                    |                          |            |
| TOTAL LECTURES                                                                                                   |                          | 45 Hours** |

#### **Books:**

- 1. Cell (A Molecular approach): Cooper, G. M.
- 2. Cell and Molecular Biology (1996) Karp, G.
- 3. Cell and Molecular Biology: deRobertis and deRobertis
- 4. Principle of Biochemistry: Leninger , A. L.
- 5. Biochemistry (1995) Lubert Stryer

## **Department of Microbiology, Biophysics and Instrumentation (Theory)**

| Program: M. Sc. in Microbiology                              | Year, Semester: 1 <sup>st</sup> Yr., 1 <sup>st</sup> Sem |
|--------------------------------------------------------------|----------------------------------------------------------|
| <b>Course Title:</b> Biophysics and Instrumentation (Theory) | Subject Code: TIU-PMB-T109                               |
| Contact Hours/Week: 2–1–0 (L–T–P)                            | Credit: 3                                                |

## **COURSE OBJECTIVE:**

Enable the student to:

- 1. To introduce the fundamental principles and applications of microscopy
- 2. To explore molecular analysis techniques
- 3. To provide knowledge on separation techniques

## **COURSE OUTCOME:**

| CO 1: | Describe the principles and applications of different microscopy | <b>K</b> 1 |
|-------|------------------------------------------------------------------|------------|
| 0-1.  | techniques                                                       | KI         |

| CO-2: | Explain molecular analysis techniques                           |    |
|-------|-----------------------------------------------------------------|----|
| CO-3: | Demonstrate the working principles of chromatography methods    |    |
| CO-4: | Analyze biomolecular structures using advanced techniques       | K4 |
| CO-5: | Evaluate electrophoresis techniques for biomolecular separation | K5 |
| CO(6) | Develop experimental protocols using chromatography and         | VG |
| CO-0. | electrophoresis                                                 | K0 |

| MODULE<br>1:                                                                                                                                                                                                                                                                            | Microscopy                                                                                                                                                                                            | 11 Hours |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| Microscopy: I<br>microscopy -s<br>processing for                                                                                                                                                                                                                                        | Microscopy: Principle and applications of light, phase contrast and fluorescence, Electron microscopy -scanning, transmission, confocal, atomic force microscope. Methods of sample processing for EM |          |  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |          |  |
| MODULE<br>2:                                                                                                                                                                                                                                                                            | Molecular Analysis                                                                                                                                                                                    | 11 Hours |  |
| Molecular analysis using UV/visible, fluorescence, circular dichroism, NMR and ESR spectroscopy Molecular structure determination using X-ray diffraction and NMR, Molecular analysis using light scattering, different types of mass spectrometry and surface plasma resonance methods |                                                                                                                                                                                                       |          |  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |          |  |
| MODULE<br>3:                                                                                                                                                                                                                                                                            | Chromatography                                                                                                                                                                                        | 11 Hours |  |
| Chromatography- TLC, ion exchange, affinity, reverse phase, gel filtration. Principle and application of High Performance Liquid Chromatography, Fast protein liquid chromatography, ELISA-Reader, Autoanalyzer, FACS                                                                   |                                                                                                                                                                                                       |          |  |
|                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                       |          |  |
| MODULE<br>4:                                                                                                                                                                                                                                                                            | Electrophoresis                                                                                                                                                                                       | 12 Hours |  |
| Electrophoresis – principle, paper, gel, SDS PAGE.                                                                                                                                                                                                                                      |                                                                                                                                                                                                       |          |  |
| TOTAL LEC                                                                                                                                                                                                                                                                               | TURES                                                                                                                                                                                                 | 45 Hours |  |
| L                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       | 1        |  |

## **Books:**

1. Bioanalytical Chemistry (Susan R. Mikkelsen and Eduardo Cortón; Wiley-Interscience; 2004; ISBN 0-471-54447-7

- 2. Biophysical Chemistry- Friedfielder
- 3. Spectrometric Identification of Organic compounds by R M Silverstein and F X Webster; Sixth edition (2002)
- 4. Introduction to Spectroscopy by D Pavia; G Lampman; G Kriz; Second edition (1996)
- 5. Biochemistry (1995) Lubert Stryer

## Department of Microbiology, Career Advancement Skill Development (CASD)

| Program: M. Sc. in Microbiology                             | <b>Year, Semester:</b> 1 <sup>st</sup> Yr., 1 <sup>st</sup> Sem |
|-------------------------------------------------------------|-----------------------------------------------------------------|
| Course Title:Career Advancement Skill<br>Development (CASD) | Subject Code: TIU-PEN-S101                                      |
| Contact Hours/Week: 2–1–0 (L–T–P)                           | Credit: 3                                                       |

## **COURSE OBJECTIVE:**

Enable the student to:

- 1. Develop Effective Communication Skills
- 2. Enhance Linguistic Proficiency
- 3. Improve Professional and Academic Writing

## **COURSE OUTCOME:**

On completion of the course, the student will be able to:

| CO-1: | Explain fundamental concepts of communication   | K1 |
|-------|-------------------------------------------------|----|
| CO-2: | Analyze the role of language in communication   | K4 |
| CO-3: | Use appropriate language in different contexts  | K3 |
| CO-4: | Demonstrate proficiency in professional writing | K6 |
| CO-5: | Evaluate different writing styles               | K5 |
| CO-6: | Enhance clarity and coherence in writing        | K3 |

| MODULE         | Concepts                                                         | 17 Hours       |
|----------------|------------------------------------------------------------------|----------------|
| 1:             |                                                                  |                |
|                |                                                                  |                |
| Concepts in    | Communication: Communication as sharing; context of commu        | inication; the |
| speaker/writer | and the listener/reader; medium of communication; barriers to co | mmunication;   |
| accuracy, bre  | wity, clarity and appropriateness in communication, Non-w        | verbal skills, |
| Paralanguage a | and Body language                                                |                |

| MODULE         | Semantics                                                         | 14 Hours       |
|----------------|-------------------------------------------------------------------|----------------|
| 2:             |                                                                   |                |
| l              |                                                                   |                |
| Semantics: A   | selected list of Synonyms, Antonyms, Homophones and Homonyr       | ns. Form and   |
| function of wo | rds. Syntax: Sentence structures, Verb patterns and their usage   |                |
|                |                                                                   |                |
|                |                                                                   |                |
| MODULE         | Writing Skills                                                    | 14 Hours       |
| 3:             |                                                                   |                |
| Writing Skills | : Types of writing (Expository, Descriptive, Analytic, Argumentat | ive, Narrative |
| etc) and their | main features. Resumes and CV's and Cover letters. Memos and N    | otices. Basics |
| of Formal Rep  | orts                                                              |                |
| 1              |                                                                   |                |
|                |                                                                   |                |
| TOTAL LEC      | TURES                                                             | 45 Hours       |
|                |                                                                   |                |

## Department of Microbiology, General Microbiology Lab

| Program: B. Sc. in Microbiology       | <b>Year, Semester:</b> 1 <sup>st</sup> Yr., 1 <sup>st</sup> Sem |  |
|---------------------------------------|-----------------------------------------------------------------|--|
| Course Title:General Microbiology Lab | Subject Code:TIU-PMB-L101                                       |  |
| Contact Hours/Week: 0–0–2 (L–T–P)     | Credit: 2                                                       |  |

## **COURSE OBJECTIVE:**

Enable the student to:

- 1. To develop practical skills in microbial culture techniques
- 2. To train students in microscopy and staining techniques
- 3. To analyze bacterial growth patterns

## **COURSE OUTCOME:**

| CO-1: | Prepare and sterilize different culture media       |    |
|-------|-----------------------------------------------------|----|
| CO-2: | Isolate pure bacterial cultures                     |    |
| CO-3: | Demonstrate the use of light microscopy             | K3 |
| CO-4: | Perform simple and differential staining techniques | K4 |
| CO-5: | Analyze microbial diversity in water samples        | K4 |
| CO-6: | Evaluate bacterial growth kinetics                  | K5 |

| MODULE                                                               | MICROBIAL CULTURE                          | <b>30 Hours</b> |  |
|----------------------------------------------------------------------|--------------------------------------------|-----------------|--|
| 1:                                                                   |                                            |                 |  |
| 1. Preparation                                                       | of culture media                           |                 |  |
| 2. Isolation of                                                      | pure culture by a streak plate preparation |                 |  |
| 3. Isolation of                                                      | pure culture by a pour plate preparation   |                 |  |
| 4. Yeast and m                                                       | old isolation                              |                 |  |
| 5. Operation of light microscopy                                     |                                            |                 |  |
| 6. Simple staining                                                   |                                            |                 |  |
| 7. Gram staining                                                     |                                            |                 |  |
| 8. Isolation of bacteria from water sample by a pour plate technique |                                            |                 |  |
| 9. Growth curv                                                       | 9. Growth curve of bacteria                |                 |  |
| TOTAL LEC                                                            | TURES                                      | <b>30 Hours</b> |  |

## Department of Microbiology, Biochemistry Lab

| Program: B. Sc. in Microbiology   | Year, Semester: 1 <sup>st</sup> Yr., 1 <sup>st</sup> Sem |  |
|-----------------------------------|----------------------------------------------------------|--|
| Course Title: Biochemistry Lab    | Subject Code:TTIU-PMB-L107                               |  |
| Contact Hours/Week: 0–0–2 (L–T–P) | Credit: 2                                                |  |

## **COURSE OBJECTIVE:**

Enable the student to:

- 1. Master Quantitative Biomolecular Analysis
- 2. Interpret Microbial Biochemical Tests
- 3. Apply Enzyme Kinetics and Protein Characterization Techniques

## **COURSE OUTCOME:**

| CO-1: | Perform Quantitative Biomolecular Estimations            | K3 |
|-------|----------------------------------------------------------|----|
| CO-2: | Execute and Interpret Microbial Biochemical Tests        | K4 |
| CO-3: | Conduct Enzyme Activity Assays Under Variable Conditions | K3 |
| CO-4: | Calculate and Analyze Enzyme Kinetic Parameters          | K4 |

| CO-5: | Determine Protein Molecular Weight Using PAGE |                                |            |    | K3     |               |    |
|-------|-----------------------------------------------|--------------------------------|------------|----|--------|---------------|----|
| CO-6: | ntegrate                                      | Laboratory                     | Techniques | to | Design | Comprehensive | K6 |
|       | Microbia                                      | Microbial Analysis Experiments |            |    |        |               | KU |

| MODULE Study of Macromolecules |                                                                                              | 30 Hours     |  |
|--------------------------------|----------------------------------------------------------------------------------------------|--------------|--|
| 1:                             |                                                                                              |              |  |
| 1. Estima                      | tion of total carbohydrate, protein of a bacterial cell.                                     |              |  |
| 2. Estima                      | tion of total DNA and RNA of a bacterial cell.                                               |              |  |
| 3. Coagul                      | 3. Coagulase tests, Catalase Tests, Oxidase test, Indole test, Methyl Red test, Urease Test, |              |  |
| Bioche                         | mical reactions on triple sugar iron agar (TSI).                                             |              |  |
| 4. Determ                      | ination of activity of amylase, protease. Effect of pH, temperature                          | re on enzyme |  |
| activity                       | r; Enzyme kinetics.                                                                          |              |  |
| 5. Determ                      | ination of MW of protein by PAGE                                                             |              |  |
| TOTAL LEC                      | TURES                                                                                        | 30 Hours     |  |

#### TOTAL LECTURES

## Department of Microbiology, Biophysics and Instrumentation Lab

| Program: B. Sc. in Microbiology                  | Year, Semester: 1 <sup>st</sup> Yr., 1 <sup>st</sup> Sem |
|--------------------------------------------------|----------------------------------------------------------|
| Course Title: Biophysics and Instrumentation Lab | Subject Code:TIU-PMB-L109                                |
| Contact Hours/Week: 0–0–2 (L–T–P)                | Credit: 2                                                |

## **COURSE OBJECTIVE:**

Enable the student to:

- 1. To familiarize students with microbiology laboratory rules and safety protocols
- 2. To introduce the basic tools and equipment used in microbiology laboratories
- 3. To develop hands-on skills in handling microbiological instruments

## **COURSE OUTCOME:**

| CO-1: | Recognize and follow laboratory safety rules and biosafety guidelines              | K2 |
|-------|------------------------------------------------------------------------------------|----|
| CO-2: | Explain the principles and applications of key microbiological tools and equipment | K2 |
| CO-3: | Demonstrate the correct usage of microscopy techniques                             | K3 |
| CO-4: | Operate essential microbiological instruments                                      | K3 |

| CO-5: | Analyze biological samples using electrophoresis techniques                          | K4 |
|-------|--------------------------------------------------------------------------------------|----|
| CO-6: | Evaluate experimental data using spectrophotometric and gel documentation techniques | K5 |

| MODULE      | Study of Different Instruments                                    | 30 Hours  |
|-------------|-------------------------------------------------------------------|-----------|
| 1:          |                                                                   |           |
| 1. Microb   | iology laboratory rules                                           |           |
| 2. Basic to | ools in a microbiological laboratory.                             |           |
| 3. Basic e  | quipments in laboratory                                           |           |
| 4. Microso  | copy: Light microscopy, Phase contrast microscopy, Fluorescence m | icroscopy |
| 5. Lamina   | r air flow, Autoclave, Hot air oven.                              |           |
| 6. Incubat  | or, Orbital shaking incubator, Water bath                         |           |
| 7. Weighi   | ng balance, Ph meter, Centrifuge machine, Distillation apparatus. |           |
| 8. Spectro  | photometer                                                        |           |
| 9. Agaros   | e gel electrophoresis, Uv-transilluminator                        |           |
| 10. Polyacı | ylamide gel electrophoresis (PAGE) and Gel documentation System   | l         |
| 11. Sonicat | or                                                                |           |
|             |                                                                   |           |
|             |                                                                   |           |
| TOTAL LEC   | ΓURES                                                             | 30 Hours  |

## Department of Microbiology, Entrepreneurship Skill Development (ESD)

| Program: B. Sc. in Microbiology                       | Year, Semester: 1 <sup>st</sup> Yr., 1 <sup>st</sup> Sem |
|-------------------------------------------------------|----------------------------------------------------------|
| Course Title:Entrepreneurship Skill Development (ESD) | Subject Code:TIU-PES-S199                                |
| Contact Hours/Week: 0–0–2 (L–T–P)                     | Credit: 2                                                |

## **COURSE OBJECTIVE:**

Enable the student to:

- 1. Understand Entrepreneurial Concepts
- 2. Enhance Business Planning and Management Skills
- 3. Develop Innovation and Problem-Solving Abilities

## **COURSE OUTCOME:**

| 1     | ·                                                          |    |
|-------|------------------------------------------------------------|----|
| CO-1: | Explain key entrepreneurial concepts                       | K1 |
| CO-2: | Identify and evaluate business opportunities               | K4 |
| CO-3: | Demonstrate business planning skills                       | K3 |
| CO-4: | Assess financial and resource management strategies        | K5 |
| CO-5: | Develop innovative solutions to entrepreneurial challenges | K6 |
| CO-6: | Apply leadership and decision-making skills                | K3 |

On completion of the course, the student will be able to:

| MODULE<br>1:                           | Study of Different Instruments | 30 Hours |  |  |
|----------------------------------------|--------------------------------|----------|--|--|
| Development of Entrepreneurship Skills |                                |          |  |  |
| TOTAL LEC                              | TURES                          | 30 Hours |  |  |