

DEPARTMENT OF MICROBIOLOGY

SYLLABUS STRUCTURE AND COURSE DETAILS w.e.f 2024-25

SEMESTER 5

RECOMBINANT DNA TECHNOLOGY (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 3 rd Yr., 5 th Sem
Course Title: RECOMBINANT DNA TECHNOLOGY (Theory)	Subject Code: TIU-UMB-MJ-T31301
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. Understand the fundamental principles of molecular cloning and its applications in genetic engineering.
- 2. Demonstrate proficiency in DNA transformation techniques, including chemical transformation and electroporation.
- 3. Explain the principles and applications of the Polymerase Chain Reaction (PCR) and its variations, including Nested PCR, Inverse PCR, Multiplex PCR, RT-PCR, and Real-Time PCR.
- 4. Identify and explain the products of recombinant DNA technology, including those of therapeutic importance, such as insulin and human growth hormone (hGH)

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	1: Able to remember restriction enzymes- nomenclature, types	
CO-2:	D-2: Construct knowledge about gene cloning, expression and gene libraries	
CO-3:	CO-3: Discover PCR amplification process and principles of DNA	
CO-4:	Students will study the process of various hybridization techniques	K2
CO-5:	Explain the process of constructing genomic and c-DNA library	K5
CO-6:	Able to apply knowledge of recombinant DNA technology	K6

MODULE 1:	10 Hours	
Cloning Tools	s; Restriction modification systems: Types I, II and III. Mod	de of action,

nomenclature, applications of Type II restriction enzymes in genetic engineering DNA modifying enzymes and their applications: DNA polymerases. Terminal deoxynucleotidyl transferase, kinases and phosphatases, and DNA ligases Cloning Vectors: Definition and Properties Plasmid vectors: pBR and pUC series Bacteriophage lambda and M13 based vectors Cosmids, BACs, YACs, Use of linkers and adaptors Expression vectors: *E.coli* lac and T7 promoter-based vectors, yeast YIp, YEp and YCp vectors, Baculovirus based vectors, mammalian SV40-based expression vectors

MODULE 2: METHODS IN MOLECULAR CLONING

Transformation of DNA: Chemical method, Electroporation Gene delivery: Microinjection, electroporation, biolistic method (gene gun), liposome and viral mediated delivery, Agrobacterium - mediated delivery DNA, RNA and Protein analysis: Agarose gel electrophoresis, Southern - and Northern - blotting techniques, dot blot, DNA microarray analysis, SDS-PAGE and Western blotting.

MODULE 3: DNA AMPLIFICATION AND DNA SEQUENCING

PCR: Basics of PCR, Types of PCR: Nested PCR Inverse PCR, Multiplex PCR, RT-PCR, Error prone PCR, Real-Time PCR, Sanger's method of DNA Sequencing: traditional and automated sequencing, Primer walking and shotgun sequencing

MODULE 4: CONSTRUCTION AND SCREENING OF GENOMIC AND CDNA 7 Hours LIBRARIES

Genomic and cDNA libraries: Preparation and uses, Screening of libraries: Colony hybridization and colony PCR, Chromosome walking and chromosome jumping

MODULE 5: APPLICATIONS OF RECOMBINANT DNA TECHNOLOGY 10 Hours

Products of recombinant DNA technology: Products of human therapeutic interest insulin, hGH, DNA fingerprinting- RAPD, VNTR Typing, site directed mutagenesis, phage Display

TOTAL LECTURES

Books:

Brown TA. (2010). Gene Cloning and DNA Analysis. 6th edition. Blackwell Publishing, Oxford, U.K.

10 Hours

8 Hours

45 Hours**

2. Clark DP and Pazdernik NJ. (2009). Biotechnology: Applying the Genetic Revolution. Elsevier Academic Press, USA

3. Primrose SB and Twyman RM. (2006). Principles of Gene Manipulation and Genomics, 7 th edition. Blackwell Publishing, Oxford, U.K.

4. Sambrook J and Russell D. (2001). Molecular Cloning-A Laboratory Manual. 3rd edition. Cold Spring Harbor Laboratory Press

5. Wiley JM, Sherwood LM and Woolverton CJ. (2008). Prescott, Harley and Klein's Microbiology. McGraw Hill Higher Education

6. Brown TA. (2007). Genomes-3. Garland Science Publishers

7. Primrose SB and Twyman RM. (2008). Genomics: Applications in human biology. Blackwell Publishing, Oxford, U.K.

Program: B. Sc. in Microbiology	Year, Semester: 3 rd Yr., 5 th Sem
Course Title: RECOMBINANT DNA TECHNOLOGY (Practical)	Subject Code: TIU-UMB-MJ-L31301
Contact Hours/Week: 0-0-1 (L-T-P)	Credit: 1

RECOMBINANT DNA TECHNOLOGY (Practical)

COURSE OBJECTIVE :

Enable the student to:

- 1. Understand the principles of bacterial transformation, including chemical and electroporation methods.
- 2. Understand the mechanism and specificity of restriction enzymes in DNA cleavage.
- 3. Analyze electropherograms, identify base calls, and recognize sequencing errors (e.g., ambiguous peaks, background noise).
- 4. Utilize bioinformatics tools for primer design, such as GC content optimization, melting temperature (Tm) calculation, and avoidance of secondary structures.
- 5. Understand the principles of polymerase chain reaction (PCR) and the role of essential components (DNA template, primers, dNTPs, polymerase, buffer).

COURSE OUTCOME :

CO-1:	Perform bacterial transformation	K3
CO-2:	Calculate transformation efficiency	K4
CO-3:	Performed digestion of DNA and agarose gel electrophoresis	K3
CO-4:	Interpret sequence by gel electropherograms	K4
CO-5:	Design primer	K3

CO-6: Perform PCR

COURSE CONTENT :

MODULE 1: BRIEF OVERVIEW ON THE DNA CLONING AND GENETIC	15 Hours	
TRANSFORMATION		
1. Bacterial Transformation and calculation of transformation efficiency		
2. Digestion of DNA using restriction enzymes and analysis by agarose gel elec	ctrophoresis	
3. Interpretation of sequencing gel electropherograms		
4. Designing of primers for DNA amplification		
5. Amplification of DNA by PCR		
TOTAL LECTURES	15 Hours**	

FOOD AND DIARY MICROBIOLOGY (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 3 rd Yr., 5 th Sem
Course Title: FOOD AND DAIRY MICROBIOLOGY (Theory)	Subject Code: TIU-UMB-MJ-T31302
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. Identify the natural microflora of food and potential sources of microbial contamination in different food products.
- 2. Examine microbial spoilage mechanisms in vegetables, fruits, meat, eggs, dairy products, bread, and canned foods.
- 3. Learn about the production and microbial processes involved in yogurt, dahi, and acidophilus milk.
- 4. Discuss the health benefits and market availability of probiotic foods.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Recall examples of intrinsic and extrinsic factors that affect microbial	K1
CO-1:	growth in foods.	KI
CO-2:	Describe the specific spoilage mechanisms that occur in vegetables, fruits,	
CO-2:	meat, eggs, milk and butter, bread, and canned foods.	K2
CO-3:	Explain the principles behind physical methods of food preservation and	K4

K4

	their effects on microorganisms.	
CO-4:	Describe the production processes of yogurt, dahi, and acidophilus milk.	K3
CO-5:	Recall the causative agents of common food intoxications and infections.	K1
CO-6:	Describe the principles behind molecular methods for detecting foodborne pathogens.	K2
	panogens.	

MODULE 1: FOOD AS A SUBSTRATE FOR MICROORGANISMS	10 Hours	
Intrinsic and extrinsic factors that affect growth and survival of microbes in f	foods, natural	
flora and source of contamination of foods in general.		
MODULE 2: MICROBIAL SPOILAGE OF VARIOUS FOODS	10 Hours	
Principles, Spoilage of vegetables, fruits, meat, eggs, milk and butter, bread, c	anned Foods	
MODULE 3: PRINCIPLES AND METHODS OF FOOD PRESERVATION	15 Hours	
Principles, physical methods of food preservation: temperature (low,		
drying), irradiation, hydrostatic pressure, high voltage pulse, microwave p		
aseptic packaging, chemical methods of food preservation: salt, sugar, orga	-	
nitrite and nitrates, ethylene oxide, antibiotics and bacteriocins.	ine actus, 50 2 ,	
interite and intrates, ethyrene oxide, antibioties and bacterioenis.		
	- 1	
MODULE 4: FERMENTED DAIRY PRODUCTS	10 Hours	
Dairy starter cultures, yogurt, dahi, acidophilus milk.		
	1	
MODULE 5: PREBIOTICS AND PROBIOTICS		
Prebiotics: definition, types, microorganisms, benefits, Fructo-oligosaccharid		
GRAS organisms (commercial prebiotic). Probiotics: definition, essential		
probiotic, types of microorganisms used, health benefits, probiotic food	ls available in	
market.		
MODULE 6: FOOD BORNE DISEASES (CAUSATIVE AGENTS, FOODS INVOLVED, SYMPTOMS AND PREVENTIVE MEASURES)	5 10 Hours	
Food intoxications: Staphylococcus aureus, Clostridium botulinum and my	cotoxins: Food	
infections: Bacillus cereus, Vibrio parahaemolyticus, Escherichia coli,		
Shigellosis, Yersinia enterocolitica, Listeria monocytogenes and Campylobacter jejuni.		
	ter jejuin	

MODULE 7:CULTURAL AND RAPID DETECTION METHODS OF FOOD
BORNE PATHOGENS IN FOODS AND INTRODUCTION TO
PREDICTIVE MICROBIOLOGY10 Hours

Culture and microscope methods – standard plate count, microscopic counts Molecular methods: PCR based detection. Biosensor based methods: optical biosensor, electrochemical biosensor, mass-based biosensor Immunological based methods: ELISA.

TOTAL LECTURES

45 Hours**

Books:

1. Adams MR and Moss MO. (1995) Food Microbiology. 4th edition, New Age International (P) Limited Publishers, New Delhi, India.

2. Banwart JM. (1987) Basic Food Microbiology. 1st edition. CBS Publishers and Distributors, Delhi, India.

3. Davidson PM and Brannen AL. (1993) Antimicrobials in Foods. Marcel Dekker, New York. Publishing, Oxford, U.K.

4. Dillion VM and Board RG. (1996) Natural Antimicrobial Systems and Food Preservation. CAB International, Wallingford, Oxon.

5. Frazier WC and Westhoff DC. (1992) Food Microbiology. 3rd edition. Tata McGraw-Hill Publishing Company Ltd, New Delhi, India.

6. Gould GW. (1995). New Methods of Food Preservation. Blackie Academic and Professional, London.

7. Jay JM, Loessner MJ and Golden DA. (2005). Modern Food Microbiology. 7th edition, CBS Publishers and Distributors, Delhi, India.

8. Lund BM, Baird Parker AC, and Gould GW. (2000). The Microbiological Safety and Quality of Foods. Vol. 1-2, ASPEN Publication, Gaithersberg, MD.

9. Tortora GJ, Funke BR, and Case CL. (2008). Microbiology: An Introduction. 9th edition, Pearson Education.

FOOD AND DIARY MICROBIOLOGY (Practical)

Program: B. Sc. in Microbiology	Year, Semester: 3rd Yr., 5th Sem
Course Title: FOOD AND DIARY MICROBIOLOGY (Practical)	Subject Code: TIU-UMB-MJ-L31302
Contact Hours/Week: 0-0-1 (L-T-P)	Credit: 1

COURSE OBJECTIVE :

Enable the student to:

- 1. Perform microbiological quality assessment of milk using the Methylene Blue Reduction Test (MBRT) and Standard Plate Count (SPC) methods, and interpret the results.
- 2. Isolate and characterize spoilage microorganisms from various food sources (milk, vegetables/fruits, and bread) using appropriate microbiological techniques
- 3. Apply aseptic techniques to prepare culture media, inoculate samples, and obtain pure cultures of microorganisms.
- 4. Analyze and compare the morphological and cultural characteristics of microorganisms isolated from different food sources.

COURSE OUTCOME :

On completion of the course, the student will be able to:

notive the microhiol quality of mills by performing the Methylene Dive	
Analyze the microbial quality of milk by performing the Methylene Blue	
Reduction Test (MBRT) and evaluate bacterial load using the standard	K4
plate count method.	
Demonstrate proficiency in the isolation and identification of spoilage	
nicroorganisms from contaminated vegetables and fruits, and interpret	K3
heir role in food spoilage	
nvestigate the microbial contaminants responsible for bread spoilage and	
lifferentiate between fungal and bacterial spoilage based on morphological	K2
nd biochemical characteristics.	
Apply microbiological techniques to prepare fermented dairy products such	
s yogurt and dahi, and assess the role of lactic acid bacteria in the	K3
ermentation process.	
llustrate the significance of microbial spoilage in food safety and	K2
ecommend strategies for minimizing contamination and foodborne illness	κ∠
Develop technical expertise in microbial analysis of food products and	
lemonstrate problem-solving skills in identifying and controlling spoilage	K6
nicroorganisms	
	emonstrate proficiency in the isolation and identification of spoilage icroorganisms from contaminated vegetables and fruits, and interpret eir role in food spoilage westigate the microbial contaminants responsible for bread spoilage and fferentiate between fungal and bacterial spoilage based on morphological and biochemical characteristics. pply microbiological techniques to prepare fermented dairy products such as yogurt and dahi, and assess the role of lactic acid bacteria in the ermentation process. Instrate the significance of microbial spoilage in food safety and ecommend strategies for minimizing contamination and foodborne illness evelop technical expertise in microbial analysis of food products and emonstrate problem-solving skills in identifying and controlling spoilage

MODULE 1: STUDY THE SPOILAGE OF FOOD SAMPLES	15 Hours
1. MBRT of milk samples and their standard plate count.	
2. Isolation of spoilage microorganisms from spoiled vegetables/fruits.	
3. Isolation of spoilage microorganisms from bread.	
4. Preparation of Yoghurt/Dahi.	

INDUSTRIAL MICROBIOLOGY (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 3rd Yr., 5th Sem
Course Title: INDUSTRIAL MICROBIOLOGY (Theory)	Subject Code: TIU-UMB-MJ-T31303
Contact Hours/Week : 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 5. To understand the historical progression of microbiology as a scientific discipline. analyze the nature of problems solved with machine learning techniques
- 6. Describe the principles of binomial nomenclature in microbial classification.
- 7. To examine the general characteristics of acellular microorganisms such as viruses, viroids, and prions.
- 8. To explore the history of phycology with an emphasis on contributions from Indian scientists.
- 9. To trace the historical developments in mycology and the contributions of notable mycologists.
- 10. To understand the general characteristics and diversity of protozoa.
- 11. To explore the diverse applications of microbiology in research and industry.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the Historical Development of Microbiology.	K1
CO-2:	Understand the Microorganisms Using Standard Taxonomic Systems	K2
CO-3:	Describe the General Characteristics of Microbial Groups	K4
CO-4:	Analyze Algae, Fungi, and Protozoa in Detail	K4
CO-5:	Evaluate the Scope and Applications of Microbiology	K5
CO-6:	Apply the research outcomes in everyday research	К3

MODULE 1:	INTRODUCTION TO I	NDUSTRIAL MICH	ROBIOLOGY		7 Hours
Brief history ar	nd developments in ind	lustrial microbiolo	ogy	L	
	ISOLATION OF FERMENTATION	INDUSTRIAL	STRAINS	AND	8 Hours
Sources of indu	ustrially important mi	crobes and metho	ods for their is	olation, pres	servation
and maintenar	nce of industrial strair	ns, strain improve	ement, Crude a	and syntheti	c media;
molasses, corr	1-steep liquor, sulphi	te waste liquor,	whey, yeast	extract and	protein
hydrolysates					
	TUDEC OF FEDMEN	ATION DROCEC		CTODE	7.11
	TYPES OF FERMENT AND MEASUREMENT		•	LIUKS	7 Hours
Types of ferme	ntation processes - So	lid-state and liqui	d-state (station	nary and sub	merged)
fermentations;	batch, fed-batch (e	g. baker's yeast) and contin	uous ferme	ntations.
Components o	f a typical bio-reactor	r, Types of biore	actors-Laborat	ory, pilot- s	cale and
production fer	menters, constantly st	irred tank and air	r-lift fermenter	rs, Measuren	nent and
control of ferm	nentation parameters	- pH, temperatu	re, dissolved o	oxygen, foan	ning and
aeration	•				C
MODULE 4:	DOWN-STREAM PRO	CESSING			8 Hours
	, filtration, centrifugati		tion precipitat	ion lyonhiliz	
and spray dryin	6	on, sorvene energe	cion, precipitat	1011, 1 <i>y</i> 0 p 11112	ation
	-8				
	MICROBIAL PRODUC				7 Hours
	(MICRO-ORGANISMS CONDITIONS, DOWNS				
Citric acid, eth	anol, penicillin, glutar	mic acid, Vitamin	B12 Enzymes	s (amylase, j	protease,
lipase), wine, b	eer				
I					
	ENZYME IMMOBILIZA				8 Hours
	mobilization, advanta	• • • •			rge scale
applications of	immobilized enzymes	(glucose isomeras	se and penicilli	n acylase)	
TOTAL LECTU	RES			45	Hours**

Books:

1. Patel A.H. (1996). Industrial Microbiology. 1st edition, Macmillan India Limited

2. Okafor N. (2007). Modern Industrial Microbiology and Biotechnology. 1st edition. Bios Scientific Publishers Limited. USA

3. Waites M.J., Morgan N.L., Rockey J.S. and Higton G. (2001). Industrial Microbiology: An Introduction. 1st edition. Wiley – Blackwell

4. Glaze A.N. and Nikaido H. (1995). Microbial Biotechnology: Fundamentals of Applied Microbiology. 1st edition. W.H. Freeman and Company

5. Casida LE. (1991). Industrial Microbiology. 1st edition. Wiley Eastern Limited.

6. Crueger W and Crueger A. (2000). Biotechnology: A textbook of Industrial Microbiology. 2 nd edition. Panima Publishing Co. New Delhi.

INDUSTRIAL MICROBIOLOGY (Practical)

Program: B. Sc. in Microbiology	Year, Semester: 3rd Yr., 5th Sem
Course Title: INDUSTRIAL MICROBIOLOGY (Practical)	Subject Code: TIU-UMB-MJ-L31303
Contact Hours/Week : 0–0–1 (L–T–P)	Credit: 1

COURSE OBJECTIVE :

Enable the student to:

- 1. Identify and describe the components of a fermenter and their roles in microbial growth and product formation.
- 2. Conduct qualitative assays to detect enzyme activity, including starch hydrolysis for amylase and protein degradation for protease.
- 3. Perform immobilization techniques such as alginate bead entrapment or adsorption methods.
- 4. Gain practical exposure to industrial fermentation processes and downstream processing techniques.

COURSE OUTCOME :

CO-1:	Undestand the different parts of a typical laboratory-scale fermenter.	K2
CO-2:	Recall the names of various components (e.g., impeller, sparger, pH probe,	
CO-2.	temperature control system)	K1
CO-3:	Describe how each component contributes to the overall fermentation	K4
0-5.	process.	174
CO-4:	Locate and identify components of a fermenter in a laboratory setting.	K3
CO-5:	Explain the purpose and methods of whole cell immobilization.	K4

CO 61	Recall the different downstream processing operations observed during the	V 1
CO-0.	visit.	K1

COURSE CONTENT :

MODULE 1:DEVELOPMENT OF DIFFERENT FERMENTATION PROCESS15 HoursAND QUANTITATIVE ANALYSIS15 Hours

1. Study different parts of fermenter

2. Microbial fermentations for the production and estimation of Enzymes: Amylase (Both qualitative and quantitative only) and Protease (Qualitative only)

3. Whole cell immobilization and detection through any one enzyme assay (Qualitative only)

4. A visit to any educational institute/industry to see the operation of instruments and other downstream processing operations.

TOTAL LECTURES

15 Hours**

ANIMAL AND VETERINARY BIOTECHNOLOGY (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 3rd Yr., 5th Sem
Course Title: ANIMAL AND VETERINARY BIOTECHNOLOGY (Theory)	Subject Code: TIU-UBT-MI-T31201
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. To familiarize students with the basic principles and tools of animal and veterinary biotechnology.
- 2. To understand the role of microbial and molecular techniques in animal health management.
- 3. Introduce transgenic technologies used in livestock improvement.
- 4. To analyze the development and impact of biotechnological products like vaccines and diagnostics in veterinary science.

COURSE OUTCOME :

CO-1:	Explain the scope and significance of animal and veterinary biotechnology	K1
CO-2:	Demonstrate understanding of molecular diagnostics and recombinant	K2

	vaccine methods	
CO-3:	Evaluate the role of transgenic animals and reproductive technologies	К3
CO-4:	Analyze the ethical, legal, and regulatory frameworks surrounding animal biotech	K4
CO-5:	Apply microbiological knowledge to animal disease detection and management	K5
CO-6:	Conduct independent research or teaching in the field of animal and veterinary biotechnology	K6

MODULE 1:	INTRODUCTION TO ANIMAL BIOTECHNOLOGY	8 Hours
Scope and im	portance	
Applications i	n livestock improvement and health	
Overview of n	nolecular biology tools used in animal biotechnology	
MODULE 2:	MOLECULAR DIAGNOSTICS IN VETERINARY SCIENCE	7 Hours
PCR, ELISA, W	Vestern blotting in disease detection	
Development	of molecular markers for disease resistance	
Case studies:	diagnosis of viral and bacterial diseases	
MODULE 3:	RECOMBINANT DNA TECHNOLOGY IN VETERINARY	7 Hours
	APPLICATIONS	
Production of	recombinant proteins and enzymes	
Development	of DNA and subunit vaccines	
Case study: Ra	abies and Foot-and-mouth disease vaccines	
MODULE 4:	TRANSGENIC AND CLONING TECHNOLOGIES	8 Hours
Methods for c	reating transgenic animals	
Applications i	n research, production, and therapeutics	
Animal clonin	g: Dolly and beyond	
MODULE 5:	VETERINARY MICROBIOLOGY AND PROBIOTICS	7 Hours
	icrobiota in animal health	
•	tics and microbial feed additives	
Microbial con	trol of zoonotic diseases	
		_

MODULE 6: ETHICAL, LEGAL AND REGULATORY ASPECTS	8 Hours	
Animal welfare concerns		
GMO regulations and biosafety		
International guidelines (OIE, FAO, WHO)		
TOTAL LECTURES	45 Hours**	

Books:

- 1. Gupta, P.K. Biotechnology and Genomics
- 2. Sambrook & Russell Molecular Cloning: A Laboratory Manual
- 3. Singh, B.D. Biotechnology: Expanding Horizons
- 4. Mehra, M. Animal Biotechnology
- 5. Journals: Veterinary Microbiology, Animal Biotechnology

ANIMAL AND VETERINARY BIOTECHNOLOGY (Practical)

Program: B. Sc. in Microbiology	Year, Semester: 3rd Yr., 5th Sem
Course Title: ANIMAL AND VETERINARY BIOTECHNOLOGY (Practical)	Subject Code: TIU-UBT-MI-L31201
Contact Hours/Week: 0-0-1 (L-T-P)	Credit: 1

COURSE OBJECTIVE :

Enable the student to:

- 1. To provide hands-on training in diagnostic methods such as ELISA and PCR.
- 2. To familiarize students with microbiological assays relevant to animal diseases.
- 3. To demonstrate techniques in reproductive biotechnology and microbial feed development.
- 4. To enable students to analyze and interpret experimental data from animal biotechnology practices.

COURSE OUTCOME:-

	Demonstrate	1 0	in	laboratory	techniques	for	DNA/RNA	
CO-1:	extraction and	l analysis						K2

CO-2:	Execute and interpret molecular diagnostic methods such as PCR, ELISA, and gel electrophoresis	K1
CO-3:	Develop and maintain animal cell cultures, including primary and continuous lines	K4
CO-4:	Perform recombinant DNA techniques, including gene cloning and expression	К3
CO-5:	Conduct assays for assessing cell viability and the effects of substances on cell cultures	K4
CO-6:	Implement biosafety protocols and ethical considerations in laboratory settings	K1

COURSE CONTENT:-

MODULE 1:	ASSESSMENT OF ZOONOTIC PATHOGEN PREVALENCE	15 Hours	
	AND ANTIMICROBIAL SUSCEPTIBILITY IN LIVESTOCK		
	WITHIN A LOCAL FARM ENVIRONMENT		
1. ELISA for d	etection of animal-specific antibodies or antigens (Demonstratio	n).	
2. PCR-based	detection of a veterinary isolates		
3. Isolation an	3. Isolation and identification of gut microbiota from animal fecal samples.		
4. Antibiotic s	4. Antibiotic sensitivity testing of zoonotic pathogens from animal samples.		
5. Preparation and testing of probiotic cultures for animal feed.			
6. Handling and storage of veterinary vaccines (Demonstration).			
7. Estimation of total protein in animal serum using Biuret method.			
8. Field visit r	eport: Veterinary diagnostic lab / animal farm / dairy facility.		
TOTAL LECT	URES	15 Hours**	

Books:

1. Laboratory Manual Animal Biotechnology Editor: Dr. Asita Elengoe

Publisher: Lincoln University College

2. Laboratory Manual of Veterinary Mycology, Microbial Biotechnology and Veterinary Immunology and Serology Authors: Varsha Sharma, Joycee Jogi

Publisher: Barnes & Noble

FORENSIC SCIENCE (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 3rd Yr., 5th Sem
Course Title: FORENSIC SCIENCE (Theory)	Subject Code: TIU-UBT-MI-T31202
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. To introduce the fundamental principles of forensic microbiology and its significance in criminal and civil investigations.
- 2. To explore the role of microbial agents in bioterrorism, human microbiome profiling, and postmortem microbial analysis.
- 3. To equip students with practical knowledge of molecular and genetic tools used in microbial forensics and DNA profiling.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Describe the history, scope, and applications of forensic microbiology.	K1
CO-2:	Explain the mechanisms of microbial involvement in bioterrorism and biocrimes.	K2
CO-3:	Analyze the significance of human microbiomes in forensic investigations and personal identification.	K3
CO-4:	Compare and evaluate microbial succession and thanatomicrobiome for estimating postmortem interval.	K4
CO-5:	Apply molecular and metagenomic techniques for detection and profiling of forensic microbial evidence.	K5
CO-6:	Design forensic strategies using DNA profiling methods like STRs, VNTRs, and RFLP for case resolution.	K6

MODULE 1:	INTRODUCTION TO FORENSIC MICROBIOLOGY	8 Hours
History and evolution of forensic microbiology, Role of microorganisms in forensic		
investigations	3	

MODULE 2: N	MICROBIAL FORENSICS AND BIOCRIME	7 Hours
Microbial forensics: concepts, Microbial agents in bioterrorism (e.g., Bacillus anthracis,		
Yersinia pestis,	Clostridium botulinum)	
MODULE 3:	HUMAN MICROBIOME IN FORENSICS	7 Hours
Skin, oral, gut,	and vaginal microbiome, Forensic applications of microbion	me profiling,
Host-microbe ir	nteractions and individuality	
MODULE 4: H	POSTMORTEM MICROBIOME	8 Hours
Microbial succ	cession in decomposing bodies, Thanatomicrobiome and	epinecrotic
community		
MODULE 5: N	MOLECULAR TECHNIQUES IN FORENSIC MICROBIOLOGY	7 Hours
	MOLECULAR TECHNIQUES IN FORENSIC MICROBIOLOGY PCR, 16S rRNA sequencing, Metagenomics, DNA fingerprinting	7 Hours
		7 Hours
PCR, qPCR, RT-I		7 Hours 8 Hours
PCR, qPCR, RT-I	PCR, 16S rRNA sequencing, Metagenomics, DNA fingerprinting	8 Hours
PCR, qPCR, RT-I MODULE 6: I STRs (Short 7	PCR, 16S rRNA sequencing, Metagenomics, DNA fingerprinting DNA PROFILING	8 Hours

Books:

- 1. Budowle, B., et al. Microbial Forensics, 3rd Edition, Elsevier.
- 2. Huffman, J.E. Forensic Microbiology, Wiley-Blackwell.
- 3. Metcalf, J.L. et al. "Microbial community assembly and metabolic function during human decomposition," Science, 2016.
- 4. Smith, M.A., et al. "Forensic Applications of the Human Microbiome," Trends in Microbiology, 2020

FORENSIC SCIENCE (Practical)

Program: B. Sc. in Microbiology	Year, Semester: 3rd Yr., 5th Sem
Course Title: FORENSIC SCIENCE (Practical)	Subject Code: TIU-UBT-MI-L31202
Contact Hours/Week: 0-0-1 (L-T-P)	Credit: 1

COURSE OBJECTIVE :

Enable the student to:

- 1. To develop hands-on skills in isolating, identifying, and analyzing microorganisms from forensic samples.
- 2. To train students in modern molecular biology techniques such as DNA extraction, PCR, and gel electrophoresis for forensic investigations.
- 3. To demonstrate the practical application of microbial succession and DNA profiling techniques in postmortem analysis and crime scene investigations.

COURSE OUTCOME:-

On completion of the course, the student will be able to:

CO-1:	Isolate and culture bacteria from environmental and forensic samples.	КЗ
CO-2:	: Extract high-quality microbial DNA suitable for molecular analysis.	
CO-3: Perform PCR amplification of microbial DNA to detect and identify		K4
CO 5.	forensic evidence.	
CO-4:	Demonstrate microbial succession in postmortem conditions to	K2
CO 1.	estimate time since death.	
CO-5:	5: Use gel electrophoresis to separate and analyze DNA fragments.	
CO-6: Evaluate forensic microbial data to interpret and support case-base		K5
00 0.	investigations.	

COURSE CONTENT:-

	ULAR CHARACTERIZATION OF ENVIRONMENTAL	15 Hours	
BACTE	RIA: FROM ISOLATION TO GENETIC PROFILING		
1. Isolation of bacteria	from environmental samples		
2. DNA extraction from	2. DNA extraction from microorganisms		
3. PCR			
4. Demonstration of Po	ostmortem microbial succession		
5. Gel electrophoresis			
TOTAL LECTURES		15 Hours**	

Books:

- 1. Budowle, B., et al. Microbial Forensics, 3rd Edition, Elsevier.
- 2. Huffman, J.E. Forensic Microbiology, Wiley-Blackwell.
- 3. Metcalf, J.L. et al. "Microbial community assembly and metabolic function during human decomposition," Science, 2016.
- 4. Smith, M.A., et al. "Forensic Applications of the Human Microbiome," Trends in Microbiology, 2020