

DEPARTMENT OF MICROBIOLOGY

SYLLABUS STRUCTURE AND COURSE DETAILS w.e.f 2024-25

SEMESTER 1

Department of Microbiology

INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 1 st Yr., 1 st Sem
Course Title: INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY (Theory)	Subject Code: TIU-UMB-MJ-T11101
Contact Hours/Week : 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. To understand the historical progression of microbiology as a scientific discipline. analyze the nature of problems solved with machine learning techniques
- 2. Describe the principles of binomial nomenclature in microbial classification.
- 3. To examine the general characteristics of acellular microorganisms such as viruses, viroids, and prions.
- 4. To explore the history of phycology with an emphasis on contributions from Indian scientists.
- 5. To trace the historical developments in mycology and the contributions of notable mycologists.
- 6. To understand the general characteristics and diversity of protozoa.
- 7. To explore the diverse applications of microbiology in research and industry.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the Historical Development of Microbiology.	K1
CO-2:	Understand the Microorganisms Using Standard Taxonomic Systems	K2
CO-3:	Describe the General Characteristics of Microbial Groups	K4
CO-4:	Analyze Algae, Fungi, and Protozoa in Detail	K4
CO-5:	Evaluate the Scope and Applications of Microbiology	K5
CO-6:	Apply the research outcomes in everyday research	K3

COURSE CONTENT :

MODULE 1: HISTORY OF DEVELOPMENT OF MICROBIOLOGY	10 Hours
Development of microbiology as a discipline, Spontaneous generation v	vs. biogenesis.
Contributionsof Anton von Leeuwenhoek, Louis Pasteur, Robert Koch,	Joseph Lister,
Alexander Fleming.	
Role of microorganisms in fermentation, Germ theory of disease, Developm microbiological techniques and golden era of microbiology, Development of t microbiology: Contributions of Martinus W. Beijerinck, Sergei N. Winogra A.Waksman Establishment of fields of medical microbiology and immunolog work of Paul Ehrlich, Elie Metchnikoff, Edward Jenner	ent of various he field of soil adsky, Selman gy through the
MODULE 2: SYSTEMS OF CLASSIFICATION	10 Hours
Binomial Nomenclature, Whittaker's five kingdom and Carl Woese's the	nree kingdom

Binomial Nomenclature, Whittaker's five kingdom and Carl Woese's three kingdom classification systems and their utility. Difference between prokaryotic and eukaryotic microorganisms

MODULE 3: GENERAL CHARACTERISTICS OF DIFFERENT GROUPS 15 Hours

Acellular microorganisms (Viruses, Viroids, Prions) and Cellular microorganisms (Bacteria, Algae, Fungi and Protozoa) with emphasis on distribution and occurrence, morphology, mode of reproduction and economic importance.

Algae: History of phycology with emphasis on contributions of Indian scientists; General characteristics of algae including occurrence, thallus organization, algae cell ultrastructure, pigments, flagella, eyespot food reserves and vegetative, asexual and sexual reproduction. Different types of life cycles in algae with suitable examples: Haplobiontic, Haplontic, Diplontic, Diplobiontic and Diplohaplontic life cycles. Applications of algae in agriculture, industry, environment and food.

Fungi: Historical developments in the field of Mycology including significant contributions of eminent mycologists. General characteristics of fungi including habitat, distribution, nutritional requirements, fungal cell ultra- structure, thallus organization and aggregation, fungal wall structure and synthesis, asexual reproduction, sexual reproduction, heterokaryosis, heterothallism and parasexual mechanism. Economic importance of fungi with examples in agriculture, environment, Industry, medicine, food, biodeterioration and mycotoxins.

Protozoa: General characteristics with special reference to Amoeba, Paramecium, Plasmodium, Leishmania and Giardia

MODULE 4:	OVERVIEW OF SCOPE OF MICROBIOLOGY	10 Hours
Application of	microbes in different areas of everyday use and research.	
TOTAL LECT	URES	45 Hours**
		•

Books:

1. Tortora GJ, Funke BR and Case CL. (2008). Microbiology: An Introduction. 9th edition. Pearson Education

2. Madigan MT, Martinko JM, Dunlap PV and Clark DP. (2014). Brock Biology of Microorganisms. 14th edition. Pearson International Edition

3. Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual. 9th edition. Pearson Education Limited

4. Wiley JM, Sherwood LM and Woolverton CJ. (2013) Prescott's Microbiology. 9 Edition. McGraw Hill International.

5. Atlas RM. (1997). Principles of Microbiology. 2nd edition. WM.T.Brown Publishers.

6. Pelczar MJ, Chan ECS and Krieg NR. (1993). Microbiology. 5th edition. McGraw Hill Book Company.

7. Stanier RY, Ingraham JL, Wheelis ML, and Painter PR. (2005).General Microbiology. 5th edition. McMillan.

INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY (Practical)

Program: B. Sc. in Microbiology	Year, Semester: 1 st Yr., 1 st Sem
Course Title: INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY (Practical)	Subject Code: TIU-UMB-MJ-L11101
Contact Hours/Week : 0-0-1 (L-T-P)	Credit: 1

COURSE OBJECTIVE :

Enable the student to:

- 1. Microbiology Good Laboratory Practices and Biosafety
- 2. Principle and Applications of Important Laboratory Instruments
- 3. Preparation and Inoculation of Culture Media for Bacterial Cultivation
- 4. Determination of Microbial Cell Size Using Micrometry

COURSE OUTCOME :

CO-1:	Demonstrate Good Laboratory Practices and Biosafety in Microbiology	K2
CO-2:	Operate and Understand the Principles of Microbiological Instruments	K2
CO-3:	Prepare and Inoculate Culture Media for Bacterial Cultivation	K4
CO-4:	Examine Fungal and Algal Specimens Using Microscopic Techniques	K3
CO-5:	Analyze Protozoan Morphology and Identification	K4
CO 6:	Determine the Size of Microbial Cells Using Micrometry and perform	K3
0.0-0.	Enumeration of Microbes Using Haemocytometry	кJ

On completion of the course, the student will be able to:

COURSE CONTENT :

MODULE 1: DEVELOPMENT OF MICROBIAL CULTURE AND	15 Hours
OBSERVATION	
1. Microbiology Good Laboratory Practices and Biosafety.	
2. To study the principle and applications of important instruments (bio	logical safety
cabinets, autoclave, incubator, BOD incubator, hot air oven, light microscop	e, pH meter)
used in the microbiology laboratory.	
3. Preparation and inoculation of culture media for bacterial cultivation .	
4. Study of Rhizopus, Penicillium, Aspergillus using temporary mounts	
5. Study of Spirogyra and Chlamydomonas, Volvox using temporary Mounts	
6. Study of the following protozoans using permanent mounts/photogra	phs: Amoeba,
Entamoeba, Paramecium and Plasmodium	
7. Determination of size of microbial cell using micrometry.	
8. Enumeration of microbes: Yeast by Haemocytometer	
TOTAL LECTURES	15 Hours**

CHEMISTRY (Theory)

Program: B.Sc. Chemistry (minor)	Year, Semester: Ist year., 1 st Sem.	
Course Title: Chemistry	Subject Code: TIU-UCH-MI-T11101	
Contact Hours/Week: 3-0-0 (L–T–P)	Credit: 3	

COURSE OBJECTIVE:

Enable the student to:

1. Understand the basic concept of structure of atom, covalent bonding, non covalent bonding thermodynamics, chemical kinetics ionic equilibria, nomenclature, stereochemistry, structures, reactivity, and mechanism of chemical reactions.

- 2. Apply the concept of thermodynamics, chemical kinetics, and ionic equilibria, in the relevant advanced and emerging field of biotechnological studies.
- 3. Apply the concept of covalent and non covalent bonding, in acquiring information regarding the metals used in any process of biotechnological system.
- 4. Remember the knowledge of stereochemistry and reaction mechanism in understanding the glimpse of the reaction pathways involved in the biotechnology process.
- 5. Understand the concept of various types of bonding, energy distributions in atomic and molecular orbital makes the student easier to understand the technology based on them.

COURSE CONTENT:

COURSE CO		
MODULE		14 Hours
1:		
1	ATOMIC STRUCTURE	5 Hours
Bohr's theor	y, its limitations and atomic spectrum of hydrogen atom. Wave	e mechanics, de
Broglie hypo	thesis, Heisenberg's uncertainty principle. Schrödinger equation	. Hydrogen and
hydrogen lil	ke systems (detail solution not required). Radial and angular	parts of wave
function, qu	antum numbers, shapes of s, p and d orbitals, Extension to π	multi electronic
systems. Auf	bau principle and its limitations, Pauli's exclusion principle, and	Hund's rules of
maximum m	ultiplicity.	
2	COVALENT BONDING	4 Hours
Lewis struct	ure. VSEPR theory, shape and polarity of simple molecules an	d ions, Valence
Bond Theory	r, concept of hybridization and shale of molecules. Molecular orb	ital theory, MO
diagram of l	nomonuclear and heteronuclear (CO & NO) diatomic molecules	, HOMO, LUMO,
Bond order.		
3	NON COVALENT BONDING	5 Hours
(i) Ionic Boi	nding: General characteristics of ionic compounds. Ionization e	energy, electron
affinity, latti	ce energy, Born-Haber cycle. (ii) Metallic Bonding: Theories of bo	nding in metals.
Band theories. (iii) Weak Interactions: Hydrogen bonding and van der Waal's interactions		
MODULE		15 Hours
2:		
1	FUNDAMENTALS OF ORGANIC CHEMISTRY	4 Hours
1		

Types of organic reactions, Inductive effect, resonance and hyper conjugation. nucleophiles and electrophiles

2

BONDING IN ORGANIC MOLECULES

5 Hours

Concept of hybridization and formation of single, double and triple bonds, Resonance and resonance energy. Qualitative idea about molecular orbital's, bonding and anti bonding molecular orbital's, idea of σ , σ^* , π , π^* , nonbonding MOs, concept of HOMO, LUMO and SOMO. Hückel's rules of aromaticity, anti aromaticity and non-aromaticity.

3

STEREOCHEMISTRY

6 Hours

Different types of isomerism. Concept of chirality and optical activity (up to two carbon atoms). Inter conversion of Fischer and Newman representations. Enantiomers, diastereomers, and meso compounds. Threo/ erythro, D/ L, cis/ trans, and E/ Z nomenclature. CIP Rules: R/S (only one chiral carbon atoms) nomenclature

MODULE 3:		15 Hours
1	GASSEOUS STATE	3 Hours

Kinetic theory of gases, ideal gas laws based on kinetic theory. Collision in a gas, mean free path, collision diameter, collision number. Behaviour of real gases, the van der Waal's equation. Critical phenomena, critical constants of a gas and their determination, the van der Waals equation and critical state, Principle of corresponding states

	1	
2	THERMODYNAMICS	6 Hours

First Law of thermodynamics. State and path functions, sign convention for heat and work, nature of work. Internal energy, enthalpy, heat changes at constant volume and constant pressure, heat capacities (CV, CP) and their relationship for ideal gases. Thermodynamic quantities (w, q, Δ U, Δ H) for isothermal and adiabatic reversible expansion of ideal gases and their comparison. Change in internal energy (Δ U) and enthalpy (Δ H) of chemical reactions, relation between Δ U and Δ H. Concept of entropy, calculation of entropy changes. Gibbs free energy, its measurement and its application in prediction of spontaneity of a process. Variation of heat of reaction with temperature (Kirchhoff's equation).

3	CHEMICAL KINETICS	6 Hours
Order and m	olecularity of chemical reactions. Rate laws for zero, 1st and 2nd	order reactions
and in gener	al for any nth order reaction. Determination of order of a reaction	by half-life and
differential r	nethods. Effect of temperature on rate, arrheninus equation. Ra	ate determining
step and stea	dy state approximation. Opposing, consecutive and parallel react	ions (first order

steps only). Enzymatic reactions

TOTAL LECTURES

Note: ^{**}Total teaching hours for a 4credit course = 39 – 45 hours with 3 Lecturers and 1 tutorial

BOOKS

- 1. Basic Inorganic Chemistry, F. A Cotton and G. Wilkinson, John Wiley & Sons.
- 2. Concise Inorganic Chemistry, J. D. Lee, Chapman & Hall.
- 3. Organic Chemistry, I. L. Finar, Vol. I & Vol. II, ELBS and Longman Ltd., New Delhi.
- 4. Organic Chemistry, R. T. Morrison and R. N. Boyd, Prentice-Hall of India (P) Ltd., New Delhi.
- 5. Organic Chemistry, J. Clayden, N. Greeves, S. Warren, and E. Wothers, , Oxford Univ. Press.
- 6. Physical Chemistry, P. Atkins and J. De Paula, International Student Edition, Oxford University Press.
- 7. Physical Chemistry, P. C. Rakshit, Sarat Book House, Calcutta.
- 8. Principles of Physical Chemistry, B. R. Puri, L. R. Sharma, and M. S. Pathania, Shoban Lal Nagin Chand & Co., Jalandhar.

B.Sc.	CHEMISTRY	(Minor)	Practical
		· ,	

Program: B.Sc. CHEMISTRY (minor)	Year, Semester: Ist year., 1 st Sem.	
Course Title: Chemistry Lab	Subject Code: TIU-UCH-MI-L11101	
Contact Hours/Week: 0-0-2 (L-T-P)	Credit: 1	

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand the safety protocol and adhere to the best laboratory practical purpose.
- 2. Understand the chemical nature of the hazardous chemicals.
- 3. Understand the basic analytical technique.
- 4. Apply the basic analytical technique for real time analysis.
- 5. Analyze the result obtained post performance of the experiment

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Understand the safety protocols, and practice the best practices inside a chemistry lab.	K2
CO-2:	Understand the nature of various types of reagents and their handling as well as storage.	K2
CO-3:	Analyze the functional groups present in organic molecules by simple reactions	K4
CO-4:	Understand the basics of analyzing various types of organic compounds and their properties.	K4
CO-5:	Understand the basic analytical techniques, such as preparation solutions of desired strength, standardization of solutions and analysis of concentration of the species (chemicals, metal ions, active ingredients etc.) present in unknown samples using titrimetric and volumetric method.	K2
CO-6:	Apply the basic analytical techniques, such as preparation solutions of desired strength, standardization of solutions, and analysis of concentration of the species in the real time analysis.	К3

COURSE CONTENT: -----

EXPERIMENT-1:	Qualitative Analysis (Organic and Inorganic):			
(i) Detection of elements (X, N, S) in organic compounds. [X = Cl, Br, I]				
(ii) Detection of functi	(ii) Detection of functional groups: COOH, C=O, CHO, Ar—OH, Ar—NH ₂ , Ar—NO ₂ , CONH ₂			
(iii) Qualitative Inorga	nic Mixture Analysis: Anions, interfering anions, cations and insolubles.			
EXPERIMENT-2:	Quantitative Analysis (Physical and Volumetric):			
i) Standardization of l	$Na_2S_2O_3$ solution against standard $K_2Cr_2O_7$ solution.			
(ii) Estimation of available chlorine in bleaching powder.				
(iii) Determination of reaction rate of iodide with hydrogen peroxide in acidic medium (iodine clock reaction				

BOOK

1. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009.

Communicative English- I (TIU-UEN-AEC-S1101)

Program: B.Sc. in MIcrobiology	Year, Semester: 1 st yr, 1 st Sem
Course Title: Communicative English- I	Subject Code: TIU-UEN-AEC-S1101
Contact Hours/Week : 2–0–0 (L–T–P)	Credit: 2

COURSE OBJECTIVE :

The primary objective is to develop in the undergraduate students a level of competence in English required for independent and effective communication for academic and industry needs. In addition to fostering the ability to use English skillfully, the graduates are trained to adapt to the changing social circumstances. These courses also enable them to engage in life-long learning and pursue advanced level studies in future.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember different principles and usage of grammar.	K1
CO-2:	Understand the use of effective communication, in both spoken and	V 2
	written English.	KZ
CO-3:	Comprehend the meaning and nuances of words in the use of vocabulary.	КЗ
CO-4:	Apply techniques of oral communication in a variety of professional and	V A
	academic situations.	Λ4
CO 5.	Create individual expressions in facilitating the dynamics of written	VE
00-5.	communication	KJ
CO-6:	Acquire skills required in a professional environment.	K6

COURSE CONTENT :

MODULE 1:	Fundamentals of Communication	5 Hours	
Introduction to communication theory			
Principles of e	ffective communication		
Barriers to con	nmunication		
Importance of	clarity, precision, and confidence in communication		
MODULE 2:	Language and Grammar Skills	5 Hours	
Basic grammar concepts (tenses, subject-verb agreement, articles, etc.)			
Sentence strue	Sentence structure and formation		
Common errors in English grammar			
Pronunciation drills and consonant sounds			
MODULE 3:	Vocabulary Building & Sentence Formation	5 Hours	

Techniques for vocabulary development			
Word meaning, synonyms, and antonyms			
Idioms, phrase	Idioms, phrases, and their usage		
Constructing r	neaningful and coherent sentences		
MODULE 4:	Oral Communication & Speaking Skills	5 Hours	
Conversationa	l skills for professional and academic settings		
Pronunciation	improvement and articulation		
Public speakir	ng and presentations		
Group discuss	ions and interpersonal communication		
MODULE 5:	Writing Skills & The Writing Process	5 Hours	
Writing a well	-structured paragraph	L	
Linking parag	raphs for coherence		
Writing proce	ess: brainstorming, drafting, revising, and editing		
Writing differ	ent types of reports		
MODULE 6:	Formal Writing & Workplace Communication	5 Hours	
Drafting profe	ssional documents:		
Minutes of meetings, agenda, notices, circulars, memos			
Writing job applications and resumes			
Report writing for business and academics			
Email etiquette			
TOTAL LECT	TOTAL LECTURES 30 HOURS		

Recommended Books:

Main Reading:

- 1. Lata, Pushp, *Communication Skills*, Oxford University Press, 2015.
- 2. Rizvi Ashraf, Effective Technical Communication, Tata McGraw-Hill, 2017
- 3. Wren & Martin, High School Grammar & Composition, S. Chand and Sons, 1998.

Supplementary Reading:

- 1. Viswamohan Aysha, English for Technical Communication, Tata McGraw-Hill.
- 2. Gregory Bassham, William Irwin, Henry Nardone & James M. Wallace. *Critical Thinking: A Student's Introduction,* Tata McGraw Hill.
- 3. CIEFL, Hyderabad, Exercises in Spoken English. Parts.I-III.. Oxford University Press

ENVIRONMENTAL SCIENCE (TIU-UOG-CVA-T1101)

Program: B.Sc. in Microbiology	Year, Semester: 1 st yr, 1 st Sem
Course Title: ENVIRONMENTAL SCIENCE	Subject Code: TIU-UOG-CVA-T1101
Contact Hours/Week: 2–0–0 (L–T–P)	Credit: 2

OURSE OBJECTIVE :

- 2. Analyze Environmental Components and Their Interactions
- 3. Evaluate Ecological and Biodiversity Conservation Strategies
- 4. Assess Pollution, Natural Resources, and Their Management
- 5. Apply Environmental Policies and Disaster Management Principles

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand Environmental Components and Issues	K2	
CO-2:	Analyze Ecosystem Dynamics and Biodiversity Conservation	K4	
CO-3:	Evaluate Environmental Chemistry and Water Quality Parameters	K5	
CO-4:	Assess the Impact of Meteorological and Natural Resource Changes	K3	
CO-5:	Develop Pollution Control and Waste Management Strategies	K6	
CO 6.	Remember Environmental Laws, Disaster Management, and Global	V1	
CO-0:	Agreements	K1	

COURSE CONTENT :

MODULE 1:	FUNDAMENTALS OF ENVIRONMENTAL SCIENCE	4 Hours
Definition, Scope and Importance; Types and Components of Environment (Atmosphere,		

MODULE 2:	ECOLOGY AND BIODIVERSITY	4 Hours
Concept of ecology: Autecology and Synecology – basic ideas, definition; food chains, food		
webs and trophic levels; Basic Concept of an ecosystem; different types of ecosystem,		
Ecological pyr	amids; Definition of biodiversity, Hot-spots of biodiversity; Ind	ia as a mega-
Habitat loss n	ation; Endangered and endemic species of India; Inreats to blo	alversity:
conservation	baching of whunte, etc., conservation of blourversity. In-situ ar	iu ex-situ
MODULE 3:	CHEMISTRY OF ENVIRONMENT	4 Hours
Fundamentals	of water quality; Concept of DO, BOD, COD, Hardness, Alkalinit	y; Chemistry
of Heavy Meta	ls-Pb, Hg, Cd and As - Physical and chemical properties; Behavi	or of heavy
metals and the	eir compounds in environment.	
MODULE 4:	METEOROLOGY	5 Hours
Basic knowled	lge of climatological parameters for environmental study;	Weather and
climate; Wes	tern disturbance, Tropical cyclones, Monsoon, El-Nino	and La-Nina
phenomena.		
MODULE 5:	NATURAL RESOURCES	5 Hours
Concept of Re	newable and Non-renewable resources: Land degradation, so	il erosion and
desertification: Deforestation: Causes, consequences and remedial measures: Water: Use		
and overexplo	vitation of surface and ground water, floods, droughts; Ener	gy resources:
Environmenta	l impacts of energy generation use of alternative and non	-conventional
energy sources, growing energy needs.		
MODULE 6:	ENVIRONMENTAL POLLUTION	4 Hours
Environmental pollution: concepts and types; Air, water, soil, noise and marine pollution-		
causes, effects and controls; Temperature inversion; photochemical Smog; Green House		
Gas (GHG) emissions reduction;Concept of hazards waste and human health risks; Solid		
waste management: control measures of Municipal, biomedical and e-waste; Rainwater		

Harvesting; Green Technology

MODULE 7: NATURAL HAZARDS AND DISASTER MANAGEMENT

Definition of hazard and disaster; Natural, technological and context hazards; Natural hazards - earthquake; volcanoes - cause and effects; floods: types and nature, effects; landslides: causes and types of landslides, effects; drought: types of drought - meteorological, agricultural, hydrological and effects; tornadoes, cyclone & hurricanes; tsunamis: causes and location of tsunamis, effects and impacts of anthropogenic activities.

MODULE 8:ENVIRONMENTAL LAWS AND POLICY, ENVIRONMENTAL4 HoursAUDIT AND EIA4

Climate change, global warming, ozone layer depletion, acid rain and their impacts on human communities and agriculture; Environment Laws: Wildlife Protection Act; Forest Conservation Act; Water (Prevention and control of Pollution) Act; Air (Prevention & Control of Pollution) Act; Environment Protection Act; Biodiversity Act; International agreements: Montreal Protocol, Kyoto protocol and climate negotiations; Convention on Biological Diversity (CBD); Definitions, introduction concepts and types ;scope and methodologiesofEIA,EIAregulationsin Indi a; Environmental summits (Year only); Environmental Audit.

TOTAL LECTURES

30 HOURS

BIOFERTILIZERS AND BIOPESTICIDES (Theory)

Program: B. Sc. in Microbiology	Year, Semester: 1 st Yr., 1 st Sem
Course Title: BIOFERTILIZERS AND BIOPESTICIDES (Theory)	Subject Code: TIU-UMB-SEC-T1101
Contact Hours/Week : 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. To understand the concept, types, and significance of biofertilizers in sustainable agriculture.
- 2. Study the isolation, characteristics, and application of Rhizobium in leguminous plants.
- **3.** Analyze the role of free-living nitrogen fixers such as Azospirillum and Azotobacter in soil fertility.

- 4. To understand the field application and agricultural benefits of phosphatesolubilizing biofertilizers.
- 5. To study microbe-based bioinsecticides and their advantages over synthetic pesticides.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the Historical Development of Microbiology.	K2
CO-2:	Classify Microorganisms Using Standard Taxonomic Systems	K1
CO-3:	Describe the General Characteristics of Microbial Groups	K4
CO-4:	Analyze Algae, Fungi, and Protozoa in Detail	K4
CO-5:	Explore the Scope and Applications of Microbiology	K5
CO-6:	Study of research outcomes in everyday research	K2

COURSE CONTENT :

MODULE 1: | BASICS OF BIOFERTILIZERS

10 Hours

Understanding the concept of biofertilizers, their types, and their role in enhancing soil fertility and plant nutrition. Various production methods for biofertilizers, including composting, vermicomposting, and the use of microbial cultures. General account of the microbes used as biofertilizers for various crop plants and their advantages over chemical fertilizers.

MODULE 2: SYMBIOTIC N2 FIXERS

Rhizobium - Isolation, characteristics, types, inoculum production and field application, legume/pulses plants, Frankia- Isolation, characteristics, Alder, Casuarina plants, nonleguminous crop symbiosis, Azolla - Isolation, characterization, mass multiplication, role in rice cultivation, crop response, field application.

6 Hours

MODULE 3: NON-SYMBIOTIC NITROGEN FIXERS

Free living Azospirillum, Azotobacter - isolation, characteristics, inoculum production and field application.

MODULE 4: PHOSPHATE SOLUBILIZERS

Phosphate solubilizing microbes - Isolation, characterization, mass inoculum production, field application

MODULE 5: MYCORRHIZAL BIOFERTILIZERS

Importance of mycorrhizal inoculum, types of mycorrhizae and associated plants, Mass inoculum production of VAM, field applications of Ectomycorrhiza and VAM.

MODULE 6: BASICS OF BIOPESTICIDES

Introduction to biopesticides, their classification, and various sources and modes of action of biopesticides.

MODULE 7: BIOINSECTICIDES DERIVED FROM MICROBES

Types of microbe-based bioinsecticides, their advantages over synthetic pesticides (target specificity, environmental safety, integrated pest management); Bacillus thuringiensis: toxin production and field applications, Nucleopolyhedroviruses (NPVs) – application and use

TOTAL LECTURES

Books:

- 1. Kannaiyan, S. (2003). Bioetchnology of Biofertilizers, CHIPS, Texas.
- 2. Mahendra K. Rai (2005). Hand book of Microbial biofertilizers, The Haworth Press, Inc. New York.
- 3. Reddy, S.M. et. al. (2002). Bioinoculants for sustainable agriculture and forestry, Scientific Publishers.
- 4. Subba Rao N.S (1995) Soil microorganisms and plant growth Oxford and IBH Publishing Co. Pvt. Ltd. NewDelhi.
- 5. Saleem F and Shakoori AR (2012) Development of Bioinsecticide, Lap Lambert Academic Publishing GmbH KG

10 Hours

45 Hours**

7 Hours

8 Hours

7 Hours

7 Hours

6. Aggarwal SK (2005) Advanced Environmental Biotechnology, APH publication.

Computer Fundamentals and Programming in Python (TIU-UCA-MD-T1103)

Program: B. Sc. in Microbiology	Year, Semester: 1 st Yr., 1 st Sem.
Course Title:Computer Fundamentals and Programming in Python	Subject Code:TIU-UCA-MD-T1103
Contact Hours/Week: 2–1–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. To introduce the fundamental concepts of computer science and programming using Python, specifically tailored for microbiology applications.
- 2. To enable students to develop computational thinking and problem-solving skills.
- 3. To demonstrate the use of Python for data analysis, visualization, and automation in microbiological research.
- 4. To foster the ability to write, debug, and execute Python programs.

COURSE OUTCOME :

The student will be able to:

CO-1	Remembering: Recall basic concepts of computer science and Python syntax	K1
CO-2	Understanding: Explain the role of programming in solving microbiological data problems.	К2
CO-3	Applying: Utilize Python to perform basic data manipulations and analysis.	К3
CO-4	Analyzing: Break down microbiological data into components for computational processing	K4
CO-5	Evaluating: Assess data outputs and troubleshoot program errors effectively.	K4
CO-6	Creating: Develop Python scripts to automate microbiological data processing.	K6

COURSE CONTENT :

MODULE 1:	Introduction to Computers	3 Hours	
Basics of comp	outer systems, hardware, and software, Operating systems a	nd file	
management,	Application of computers in microbiology.		
MODULE 2:	Introduction to Python Programming	3 Hours	
Installation of	Python and IDEs (like Anaconda), Writing and executing ba	sic Python	
scripts, Under	standing variables, data types, and operators.		
MODULE 3:	Control Structures and Loops	3 Hours	
Conditional st	atements (if, elsif, else), Looping structures (for, while), App	lications in	
microbiologic	al data processing.		
MODULE 4:	Functions and Modules	3 Hours	
Creating user-	defined functions, Importing and using standard Python libr	aries,	
Writing modu	lar code for data analysis.		
MODULE 5:	Data Structures in Python	3 Hours	
Lists, tuples, s	ets, and dictionaries, Storing and manipulating microbiologi	cal data,	
Practical applications in data storage.			
MODULE 6:	File Handling and Data I/O	3 Hours	
Reading from	and writing to files, Handling CSV and text data, Data logging	g for	
experimental results			
MODULE 7:	Introduction to Numpy and Pandas	3 Hours	
Using Numpy for numerical operations, Pandas for data manipulation and analysis,			
Working with large microbiological datasets.			

MODULE 8:	Data Visualization	3 Hours	
Introduction to Matplotlib and Seaborn, Plotting graphs and histograms, Visual			
representation	n of experimental data.		
MODULE 9:	Bioinformatics Data Handling	3 Hours	
Parsing DNA/	RNA sequence data, Basic data transformation and analysis,	Case	
studies on microbiological datasets.			
MODULE	Project and Assessment	3 Hours	
10:			
Group projects: Automating data analysis, Presentation of solutions, Feedback and			
course evaluation.			
TOTAL LECT	URE	30 Hours	

Recommended Books:

- 1. "Python Programming: A Modern Approach" by Vamsi Kurama
- 2. "Introduction to Computing and Problem Solving with Python" by Jeeva Jose
- 3. "Python for Bioinformatics" by Sebastian Bass