

Detail Syllabus (2024-2025) For Two Year M. Sc. Chemistry

Department of Chemistry Techno India University, West Bengal

EM-4/1, Sector-V, Salt Lake, Kolkata-700091

Course Structure (2024-2025) Syllabus

Semester-I

Course Code	Course Title			Credit	
		L	Τ	Р	Greate
TIU-PCH-T107	Analytical Chemistry	3	0	0	3
TIU-PCH-T105	Inorganic Chemistry	3	0	0	3
TIU-PCH-T103	Organic Chemistry	3	0	0	3
TIU-PCH-T101	Physical Chemistry	3	0	0	3
TIU-PCH-L115	Inorganic Chemistry Lab-I	0	0	4	2
TIU-PCH-L113	Organic Chemistry Lab-I	0	0	4	2
TIU-PCH-L111	Physical Chemistry Lab-I	0	0	4	2
TIU-PCH-L121	Fundamentals of AI in Chemistry	1	0	2	2
	Total	13	0	14	20

Semester-II

Course Code	Course Title			Credit	
		L	Т	Р	Greune
TIU-PCH-T132	Biological Chemistry	3	0	0	3
TIU-PCH-T106	Inorganic Chemistry	3	0	0	3
TIU-PCH-T104	Organic Chemistry	3	0	0	3
TIU-PCH-T102	Physical Chemistry	3	0	0	3
TIU-PCH-L116	Inorganic Chemistry Lab-II	0	0	4	2
TIU-PCH-L114	Organic Chemistry Lab-II	0	0	4	2
TIU-PCH-L112	Physical Chemistry Lab-II	0	0	4	2
TIU-PCH-L122	Application of AI in Chemistry	1	0	2	2
	Total	13	0	14	20

Course Code	Course Title		Crodit					
course coue		L	Т	Р	Cieuit			
TIU-PCH-T223	Spectroscopy-I and Polymers	3	1	0	4			
TIU-PCH-T231	Industrial Chemistry [#]							
TIU-PCH-T233	Environmental Chemistry#	3	1	0	4			
TIU-PCH-T235	Green Chemistry [#]							
TIU-PCH-T215	Specialization Paper-I (I)*							
TIU-PCH-T211	Specialization Paper-I (0)*	3	1	0	4			
TIU-PCH-T207	Specialization Paper-I (P)*							
TIU-PCH-T217	Specialization Paper-II (I)*							
TIU-PCH-T213	Specialization Paper-II (0)*	3	1	0	4			
TIU-PCH-T209	Specialization Paper-II (P)*							
TIU-PCH-L211	Advance Inorganic Chemistry Lab (I)*							
TIU-PCH-L213	Advance Organic Chemistry Lab (0)*	0	0	8	4			
TIU-PCH-L215	Advance Physical Chemistry Lab (P)*							
TIU-PCH-P291	Project-I 0 0 4							
	Total	12	4	12	24			

Semester III

* I-Inorganic Chemistry O-Organic Chemistry P-Physical Chemistry

*Specialization Papers (I and II) Physical Chemistry (P)

1. TIU-PCH-T207: Quantum Mechanics and Chemical Applications of Group Theory 2. TIU-PCH-T209: Electrochemistry

Organic Chemistry (0)

1. TIU-PCH-T211: Advanced Organic Chemistry-I 2. TIU-PCH-T213: Advanced Organic Chemistry-II

Inorganic Chemistry (I)

1. TIU-PCH-T215: Organometallic Chemistry of Transition Metals

2. TIU-PCH-T217:Advanced Bioinorganic Chemistry

#Elective Paper-I:

1. Environmental Chemistry

- 2. Industrial Chemistry
- 3. Green Chemistry

Course Code	Course Title			Credit				
course coue	course mile	L	Т	Р	cicuit			
TIU-PCH-T224	Spectroscopy-II and Supramolecules	3	1	0	4			
TIU-PCH-T232	Advanced Materials Chemistry#							
TIU-PCH-T234	Energy Conversion and Storage#		1	0	4			
TIU-PCH-T236	Chemical Biology#	3	L					
TIU-PCH-T238	Medicinal Chemistry [#]							
TIU-PCH-T210	Specialization Paper-III (I)*							
TIU-PCH-T214	Specialization Paper-III (0)*	3	1	0	4			
TIU-PCH-T212	Specialization Paper-III (P)*							
TIU-PCH-P292	Project-II 0 0 12							
	Total	9	3	12	18			

Semester-IV

* I-Inorganic Chemistry O-Organic Chemistry P-Physical Chemistry

*Specialization Paper (III) **Physical Chemistry (I)**

TIU-PCH-T212: Advanced Solid State Chemistry and Spectroscopy

Organic Chemistry (0)

TIU-PCH-T214: Advanced Organic Chemistry-III

Inorganic Chemistry (I)

TIU-PCH-T210: Inorganic Rings, Chains, and Clusters

#Elective Paper-II:

- 1. Advanced Materials Chemistry
- 2. Energy Conversion and Storage
- 3. Chemical Biology
- 4. Medicinal Chemistry

Note: Highlighted courses were added to the curriculum in the respective semesters

Program:M. Sc. Chemistry	Year, Semester: 1 st Yr., 1 st Sem.		
Course Title:Analytical Chemistry	Subject Code: TIU-PCH-T107		
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3		

Enable the student to:

- 1. Learn analytical methods for data organization, validation, and chemometrics.
- 2. Understand chemical equilibria in acid-base, redox, complexometric, and precipitation systems.
- 3. Explore sensing and separation techniques in chemical sensors and chromatography.

COURSE OUTCOME:

On completion of the course, the student will be able to:

<u> </u>		
CO-1:	Remember the fundamental principles and objectives of analytical statistics, including method selection, sample processing, and data organization.	K1
CO-2:	Understand the concepts of chemical equilibria in aqueous media, including acid-base, redox, and precipitation reactions.	K2
CO-3:	Understand the different types of chemical sensors and their working principles based on modes of transduction and chemically sensitive materials.	K2
CO-4:	Apply the application of charge balance, mass balance, and equilibrium calculations in acid-base titrations.	К3
CO-5:	Apply chromatographic techniques such as paper chromatography, column chromatography, and HPLC for the separation and analysis of chemical compounds.	К3
CO-6:	Analyze the role of chemometrics and good laboratory practices in ensuring accuracy and reliability in analytical chemistry.	K4

COURSE CONTENT:

MODULE 1:	Analytical Statistics	8 Hours
Scope and obje	ctives. Classification of analytical methods, Method selection, S	ample processing,
Steps in a quan	titative analysis, Quantitative range (bispartite classification), l	Data organization,
Analytical valid	lations, Limit of detection and limit of quantization. The t	ools of analytical

chemistry and good lab practices. Analytical chemometrics.									
MODULE 2:	Treatment of Equilibria	20 Hours							
Solvents and so	Solvents and solutions, General treatment of equilibria in aqueous medium involving monoprotic								
weak acid, weal	k base, and salts of weak acids and weak bases. Activity and cor	ncentration, Effect							
of electrolytes	on chemical equilibria, Calculation of pH, Charge balance a	nd mass balance							
equations, Acid	-base titrations, Titration curves, theory of pH indicators. Compl	exation equilibria							
and complexon	netrictitrations. Redox equilibria and redox titration, Theory of	redox indicators.							
Precipitation re	actions and precipitation titrations, theory of adsorption indicate	ors.							
MODULE 3:	Chemical Sensors and Separation Techniques	8 Hours							
Least Squares n	nethod - Multivariate Linear Regression - Perceptron, Multiple L	ayer Perceptron -							
Support Vector	Machines - Obtaining probabilities from Linear classifiers - Ke	ernel methods for							
non-Linearity -	Probabilistic models for categorical data – Naïve Bayes Classifier								
MODULE 4:	Chromatographic Techniques	6 Hours							
Principles of	chromatography, Classification of chromatography, Paper	chromatography,							
Techniques of column chromatography, Thin layer chromatography, Gas Chromatography, High-									
performance liquid chromatography, Ion chromatography.									
TOTAL LECTU	FOTAL LECTURES 42 Hours								

BOOKS

- 1. D. A. Skoog, Principles of Instrumental Analysis, 7th Edition (2018), Cengage Learning, Boston, MA.
- 2. D. A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Analytical Chemistry: An Introduction, 10th Edition (2013), Cengage Learning, Boston, MA.
- 3. Nirmalendu Nath, Kakoli Upadhyay, Avinash Upadhyay, Biophysical Chemistry: Principles and Techniques, 2nd Edition (2021), Himalaya Publishing House, New Delhi.
- 4. J. H. Kennedy, Analytical Chemistry: Principles, 3rd Edition (2005), Brooks/Cole, Cengage Learning, Belmont, CA.
- 5. G. W. Ewing, Instrumental Methods of Chemical Analysis, 6th Edition (1985), McGraw Hill Education, New York.
- 6. R. L. Pecsok, L. D. Shields, T. Cairns, and L.C. McWilliam, Modern Methods of Chemical Analysis, 3rd Edition (1994), John Wiley & Sons, New York.
- 7. G. D. Christian, Analytical Chemistry, 7th Edition (2003), John Wiley & Sons, New York.

		PR	OGRA	M OUT	COM	IES ((PO)		PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	1	2	3	
CO-1	3	2	1	1	1			1	2	1	1	
CO-2	3	2	2	1	1			1	2	1	1	
CO-3	3	2	2	1	1			1	2	1	1	
CO-4	3	2	2	1	1			1	2	1	1	
CO-5	3	2	2	1	1			1	2	1	1	

CO-6	3	2	2	2	1	 1	1	2	1	1
Average	3	2	1.83	1.16	1	 1	1	2	1	1

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 1 st Sem.		
Course Title: Inorganic Chemistry	Subject Code: TIU-PCH-T105		
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3		

Enable the student to:

- 1. Understand chemical bonding through VB and MO theories for diatomic and polyatomic molecules.
- 2. Explore metal-ligand interactions using crystal field theory, molecular orbital theory, and electronic spectra of transition metal complexes.
- 3. Apply symmetry and group theory to molecular structures, character tables, and vibrational spectroscopy.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental concepts of chemical bonding, including VB and MO theories for diatomic and polyatomic molecules.	K1
CO-2:	Understand the crystal field theory, ligand-field parameters, and electronic spectra of transition metal complexes.	K2
CO-3:	Apply the molecular orbital theory to analyze metal-ligand interactions and bonding characteristics.	K3
CO-4:	Analyze the effects of symmetry elements and group theory on molecular vibrations and spectroscopic transitions.	K4
CO-5:	Analyze Jahn-Teller distortions, spin selection rules, and charge transfer spectra in coordination complexes.	K4
CO-6:	Understand the classification of molecules based on point groups and construct character tables for symmetry analysis.	K2

COURSE CONTENT :

MODULE 1:	Chemical Bonding	8 Hours
VB and LCAO	-MO treatments on H ₂ ⁺ , H ₂ . Application to homo- and hetero- nu	icleardiatomic
molecules/ io	ns of second period elements. Importance of bond order, MO's o	fdiatomic and
polyatomic m	olecules BeH ₂ , H ₂ O, NH ₃ , CH ₄ .	

MODULE 2:	Metal-Ligand Bonding in Transition Metal Complexes	10 Hours			
Crystal field	splitting diagrams in complexes of low symmetries. Spectro-	chemical and			
Nephelauxetic	c series. Thermodynamic and structural effects. Site selection in	spinels, Jahn-			
Teller distort	ions. Experimental evidence for metal-ligand orbital overlap. Mol	ecular orbital			
theory as app	ied to metal complexes, Brief introduction to angular overlap model				
MODULE 3:	Electronic spectra of Transition Metal Complexes	10 Hours			
The Russel-Sa	nunders coupling, Microstates, Spectroscopic ground states of met	al ions, Orgel			
and Tanabe-S	ugano diagrams for transition metal complexes, Electronic spectra	of octahedral			
and tetrahed	ral complexes, calculation of ligand-field parameters. Magnetic	c moment of			
transition me	al complexes, orbital contributions, spin-orbit coupling. Charge tran	sfer spectra.			
MODULE 4:	Symmetry and Group Theory	14 Hours			
Symmetry ele	ments and operations, determination of point group of a molecule,	reducible and			
irreducible r	irreducible representations, definitions of classes and character, statement of Grand				
Orthogonality Theorem, construction of character table, reduction formula, direct product					
representation and its uses, symmetry of normal modes, normal mode analysis, selection rules					
for IR and Rar	nan transitions.				
TOTAL LECT	URES	42 Hours			

BOOKS

- 1. D.F. Shriver, P.W. Atkins, Inorganic Chemistry, 5th Edition (2017), Oxford University Press, Oxford.
- 2. B. Douglas, D. McDaniel, J. Alexander, Concepts and Models of Inorganic Chemistry, 3rd Edition (2001), John Wiley and Sons, Inc., New York.
- 3. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 6th Edition (1999), John Wiley & Sons, New York.
- 4. James E. Huheey, Inorganic Chemistry, 4th Edition (1993), Addison-Wesley Pub. Co., New York.
- 5. R.S. Drago, Physical Methods in Inorganic Chemistry, International Edition (1971), Affiliated East-West Press, New Delhi.

	PROGRAM OUTCOMES (PO)								PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	1	1			1	2	1	1
CO-2	3	2	2	1	1			1	2	1	1
CO-3	3	2	2	1	1			1	2	1	1
CO-4	3	2	2	1	1			1	2	1	1
CO-5	3	2	2	1	1			1	2	1	1
CO-6	3	2	2	2	1			1	2	1	1
Average	3	2	1.83	1.16	1			1	2	1	1

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 1 st Sem.
Course Title:Organic Chemistry	Subject Code: TIU-PCH-T103
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

Enable the student to:

- 1. Understand aromaticity in benzenoid, non-benzenoid, antiaromatic, and homoaromatic systems.
- 2. Analyze structure-reactivity relationships using linear free energy correlations and steric/solvent effects.
- 3. Explore nucleophilic substitutions and heterocycles with mechanisms, stereochemistry, and functional group transformations.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the fundamental concepts of aromaticity, including benzenoid, non- benzenoid, antiaromatic, and homoaromatic systems.	K2
CO-2:	Remember the structure-reactivity relationships using the Hammett equation, Taft equation, and solvent/steric effects.	K1
CO-3:	Apply the linear free energy relationships to predict and interpret reaction mechanisms.	К3
CO-4:	Analyze the nucleophilic substitution mechanisms (SN ¹ , SN ² , SN ⁱ , SN ^{Ar}) with respect to stereochemistry and influencing factors.	K4
CO-5:	Remember the classification of the functional group protection and deprotection strategies for organic synthesis applications.	K1
CO-6:	Analyze the synthesis, reactivity, and applications of heterocyclic compounds like furan, thiophene, pyrrole, pyridine, and indole.	K4

COURSE CONTENT :

MODULE 1:	Aromaticity	6 Hours				
Benzenoid and non-benzenoid systems, antiaromaticity, homoaromaticity, alternant						
alternante hyd	drocarbons.					
MODULE 2:	Structure-reactivity relationship: A quantitative approach	8 Hours				
Linear free energy relations: Hammett equation, Hammett's σ_x and ρ values and their physical and the sequence through conjugation deviations from straight line plots. Toft equations at raise						
solvent effects: Grunwald-Winstein equation.						
MODULE 3:	Nucleophilic Substitutions at Saturated Carbon	12 Hours				

Mechanism and Stereochemistry of $S_N{}^1$, $S_N{}^2$, $S_N{}^i$ and $S_N{}^{Ar}$ reactions. Reactivity: the effect of substrate structure, nucleophiles, leaving groups and reaction medium. Phase transfer catalysis and ultrasonic waves, Ambient nucleophiles, Regioselectivity. Competition between $S_N{}^1$ and $S_N{}^2$ mechanisms.

MODULE 4:	Protection and Deprotection of Functional Groups	6 Hours					
Protection of	Protection of NH ₂ and OH groups,diols, carbonyl groups, carboxyl groups, double bonds and						
triple bonds.							
MODULE 5:	Heterocycles	10 Hours					
Nomenclatu	Nomenclature of heterocyclic compounds, Synthesis, reactivity and uses of the following						
heterocyclic	heterocyclic compounds [containing one hetero-atom] and their derivatives: furan, thiophene,						
pyrrole, pyridine & indole.							
TOTAL LECT	URES	42 Hours					

BOOKS

- 1. D.1. P. S. Kalsi, Organic Reactions and Their Mechanisms, 3rd Edition (2020), New Age International Publication, New Delhi.
- 2. T. H. Lowry, K.S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd Edition (2014), Addison-Wesley Longman Inc.
- 3. S. M. Mukherjee, S.P. Singh, Reaction Mechanism in Organic Chemistry, 2nd Edition (2017), MacMillan India Ltd, New Delhi.
- 4. Peter Sykes, A Guide Book to Mechanism in Organic Chemistry, 7th Edition (2016), Orient Longman Ltd, New Delhi.
- 5. R. T. Morrison, R.N. Boyd, Organic Chemistry, 7th Edition (2010), Prentice-Hall of India, New Delhi.
- 6. I. Fleming, Pericyclic Reactions, 1st Edition (2015), Oxford University Press, Oxford.
- 7. S. M. Mukherjee and S.P. Singh, Pericyclic Reactions, 2nd Edition (2021), MacMillan India Ltd.

	PROGRAM OUTCOMES (PO))	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	1	1			1	2	1	1
CO-2	3	2	2	1	1			1	2	1	1
CO-3	3	2	2	1	1			1	2	1	1
CO-4	3	2	2	1	1			1	2	1	1
CO-5	3	2	2	1	1			1	2	1	1
CO-6	3	2	2	2	1		1	1	2	1	1
Average	3	2	1.83	1.16	1		1	1	2	1	1

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 1 st Sem.
Course Title: Physical Chemistry	Subject Code: TIU-PCH-T101
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

Enable the student to:

- 1. Understand thermodynamic principles in classical and statistical thermodynamics, including entropy, partition functions, and probability distributions.
- 2. Analyze reaction kinetics through composite reaction mechanisms, steady-state approximation, and chain reactions.
- 3. Explore nuclear chemistry covering radioactive decay, nuclear reactions, radiation interaction, and dosimetry.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental concepts of classical and statistical thermodynamics, including entropy, partition functions, and thermodynamic probability.	K1
CO-2:	Remember the principles of chemical kinetics, composite reaction mechanisms, and rate-determining steps.	K1
CO-3:	Apply the statistical thermodynamics to derive thermodynamic functions and analyze gas entropy.	K3
CO-4:	Analyze the complex reaction mechanisms, including chain and oscillatory reactions, using steady-state and microscopic reversibility principles.	K4
CO-5:	Remember the classification of different types of radioactive decay, nuclear reactions, and radiation interactions with matter.	K1
CO-6:	Apply the nuclear stability, isomerism, dosimetry, and conservation laws in nuclear reactions.	К3

COURSE CONTENT :

MODULE 1:	Classical Thermodynamics	6 Hours					
Brief review	on basic concept of thermodynamics. Partial molar quantitie	s and their					
significances.	Third law of thermodynamics: Nernst heat theorem, variation of entropy with						
temperature,	determination of absolute entropy of liquid and gases, residual entrop	by.					
MODULE 2:	Statistical Thermodynamics	14 Hours					
Thermodynar	Thermodynamic probability and entropy, Maxwell-Boltzmann distribution law; Bose-Einstein						
and Fermi-Dirac statistics, Partition function: rotational, translational, vibrational and							
electronic par	electronic partition functions of diatomic molecules, Relation between partition functions with						

different thermodynamic functions, Entropy of a perfect gas: Gibb's paradox and Sackur-Tetrode equation.

MODULE 3: Chemical Kinetics	10 Hours
Brief review on basic chemical kinetics, Composite reactions-types of composite	mechanisms,
rate equations for composite mechanisms, simultaneous and consecutive reactions,	, steady state
treatment, rate-determining steps, microscopic reversibility and detailed balan	ice, dynamic
chain (H ₂ -Br ₂ reaction, decomposition of ethane and acetaldehyde) and oscillato	ory reactions
(Belousov-Zhabotinskii reaction), branching chain: H ₂ -O ₂ reaction.	
MODULE 4: Nuclear Chemistry	12 Hours
Elements of radiation chemistry, General characteristics of radioactive decay, de	ecay kinetics,
parent daughter decay growth relationships, artificial radioactivity, Classification	ı of nuclides,
Nuclear stability, Nuclear isomerism and internal conversion, Interaction of nucle	ear radiation
with matter, charged particles, neutrons and gamma rays, Unit of radiation	absorption,
radiation dosimetry, Types of nuclear reaction-fission and fusion, Conservation	n in nuclear
reaction: linear momentum and mass- energy, Bohr's compound nucleus theor	y of nuclear
reaction.	

TOTAL LECTURES

42 Hours

BOOKS

- 1. P.W. Atkins, Physical Chemistry, 11th Edition (2018), Oxford University Press, New York.
- 2. I.N. Levine, Physical Chemistry, 7th Edition (2013), Tata McGraw Hill Publication Co, Ltd, New Delhi.
- 3. H.J. Arnikar, Essentials of Nuclear Chemistry, 5th Edition (2005), Wiley Eastern Ltd, New Delhi.
- 4. G.W. Castellan, Physical Chemistry, 4th Edition (2004), Narosa Publishing House.

	F	PRO	GRAM	OUTO	OM	IES	(PO)	PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	1	2	3	
CO-1	3	2	1	1	1			1	2	1	1	
CO-2	3	2	2	1	1			1	2	1	1	
CO-3	3	2	2	1	1			1	2	1	1	
CO-4	3	2	2	1	1			1	2	1	1	
CO-5	3	2	2	1	1			1	2	1	1	
CO-6	3	2	2	2	1			1	2	1	1	
Average	3	2	1.83	1.16	1			1	2	1	1	

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 1 st Sem.
Course Title:Inorganic Chemistry Lab-I	Subject Code: TIU-PCH-L115
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2

The course aims to provide practical skills on (i) qualitative and quantitative estimation of varieties of ions and selected compounds in solution; (ii) syntheses, purification and characterizations of inorganic metal complexes.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the principles of chromatographic, gravimetric, volumetric, and spectrophotometric techniques for inorganic analysis.	K1
CO-2:	Understand the synthesis, characterization, and spectral interpretation of metal complexes with varying ligand field strengths.	K2
CO-3:	Apply paper chromatography for the separation of cations and anions in aqueous and non-aqueous media.	К3
CO-4:	Analyze inorganic ion concentrations using colorimetry, iodometry, and complexometric titration methods.	K4
CO-5:	Analyze electronic spectra and calculate ligand-field parameters of synthesized metal complexes.	К3
CO-6:	Understand essential inorganic compounds, including iodine in salt, phosphoric acid in beverages, and calcium in dairy products, using appropriate quantitative techniques.	K2

COURSE CONTENT :

Experiment 1: Separation of a mixture of cations/anions by paper chromatographic technique using aqueous/non-aqueous media.

Experiment 2: Quantitative separation and determination of pairs of metal ions using gravimetric and volumetric methods.

Experiment3: Synthesis of a series of metal complexes (with ligands of varying ligand field strength), electronic spectral interpretation and calculation of various ligand-field parameters.

Experiment 4: Quantitative estimation of inorganic ions by colorimetry

Experiment 5: Preparation of [Ni(NH₃)₆]²⁺ and other similar metal complexes and their

structural analysis by different methods.

Experiment 6: Estimation of iodine in iodized common salt using iodometry

Experiment 7: Estimation of phosphoric acid in cola drinks by molybdenum blue method

Experiment 8: Determination of the amount of calcium in milk powder by using
complexometric titration withEDTA.56 HoursTOTAL LECTURES56 Hours

BOOKS

- 1. Vogel, A.I. Vogel's Textbook of Quantitative Chemical Analysis, 6th ed., 2021, Pearson Education Limited.
- 2. Elias, A.J. A Collection of Interesting General Chemistry Experiments, 2nd ed., 2020, Sangam Books.
- 3. Mukherjee, G.N. Advanced Experiments in Inorganic Chemistry, 2nd ed., 2018, U.N. Dhur & Sons (P) Ltd.

	PR	OGI	RAM	1 O U	ТСС)ME	S (F	0)	PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	1	2	3	
CO-1	2	1	1	2	1	1	1	1	1	3	2	
CO-2	2	1	1	2	1	1	1	1	1	3	2	
CO-3	2	1	1	2	1	1	1	1	1	3	2	
CO-4	2	1	1	2	1	1	1	1	1	3	2	
CO-5	2	1	1	2	1	1	1	1	1	3	2	
CO-6	2	1	1	2	1	1	1	1	1	3	2	
Average	2	1	1	2	1	1	1	1	1	3	2	

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 1 st Sem.
Course Title:Organic Chemistry Lab-I	Subject Code: TIU-PCH-L113
Contact Hours/Week : 0–0–4 (L–T–P)	Credit: 2

To develop proficiency in laboratory techniques for the separation, identification, and quantitative analysis of organic compounds in various mixtures.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental principles of separation techniques based on physical properties of aromatic compounds.							
CO-2:	Understand the methods for the identification of organic compounds in binary and ternary mixtures.							
CO-3:	Apply the separation techniques to isolate and analyze organic compounds from complex mixtures.	К3						
CO-4:	Analyze the composition of organic mixtures using qualitative and quantitative approaches.	K4						
CO-5:	Analyze the experimental data to determine the presence of sulfur and nitrogen in organic samples.	K4						
CO-6:	Analyze organic compounds using appropriate separation and analytical techniques.	K4						

COURSE CONTENT :

Experiment 1: Separation of aromatic compounds utilizing their physical properties.

Experiment 2: Separation and identification of organic compounds in a binary mixture.

Experiment 3: Separation and identification of organic compounds in a mixture containing three components.

Experiment 4: Quantitative analysis of sulfur and and nitrogen in organic samples.**TOTAL LECTURES56 Hours**

BOOKS:

- 1. Middleton, H. Systematic Organic Qualitative Analysis, 2nd ed., 1995, Prentice Hall.
- 2. Vogel, A.I. Qualitative Organic Analysis, 5th ed., 1989, Longman Scientific & Technical.
- 3. Benson, J. A. Laboratory Experiments in Organic Chemistry, 4th ed., 2014, Cengage Learning.
- 4. Lloyd, D. Practical Organic Chemistry, 2nd ed., 2005, Wiley.

	PR	OGI	RAM	1 O U	TCO)ME	S (F	'0)	PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	1	2	3	
CO-1	2	1	1	2	1	1	1	1	1	3	2	
CO-2	2	1	1	2	1	1	1	1	1	3	2	
CO-3	2	1	1	2	1	1	1	1	1	3	2	
СО-4	2	1	1	2	1	1	1	1	1	3	2	
CO-5	2	1	1	2	1	1	1	1	1	3	2	
CO-6	2	1	1	2	1	1	1	1	1	3	2	
Average	2	1	1	2	1	1	1	1	1	3	2	

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 1 st Sem.
Course Title: Physical Chemistry Lab-I	Subject Code: TIU-PCH-L111
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2

In this course students learn about hand-on experiences of techniques for verifying physical and chemical properties and data interpretation.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental principles of reaction kinetics, thermodynamics, and equilibrium in chemical systems.	K1								
CO-2:	Understand the kinetics of saponification and acid-catalyzed hydrolysis using experimental data.									
CO-3:	Apply polarimetric, calorimetric, and equilibrium methods to determine rate constants and thermodynamic parameters.									
CO-4:	Analyze the energy of activation for saponification and the heat of solution of oxalic acid.									
CO-5:	Apply the concept of partial molal quantities and their significance in solution chemistry.	К3								
CO-6:	Analyze the hydrolysis constant of ammonium chloride and evaluate its equilibrium behavior.	K4								

COURSE CONTENT :

Experiment 1: Saponification of ethyl acetate by NaOH: determination of rate constant

Experiment 2: Determination of energy of activation of Saponification of ethyl acetate

Experiment 3: Determination of rate constant of acid catalyzed hydrolysis of sucrose by polarimetric method

Experiment 4: Determination of heat of solution of oxalic acid from its solubility at different temperature

Experiment 5: Determination of partial molal quantity

 Experiment 6: Determination of hydrolysis constant of NH4Cl

 TOTAL LECTURES
 56 Hours

BOOKS

- 1. James, A.M., Prichard, F.F. Practical Physical Chemistry, 3rd ed., 2021, Prentice Hall.
- 2. Levitt, B.P. Findlay's Practical Physical Chemistry, 10th ed., 2020, Prentice Hall.
- 3. Shoemaker, D.P., Haile, J., Moeller, W.J. Experimental Physical Chemistry, 3rd ed., 2014, Prentice Hall.

	PR	OGI	RAM	1 O U	TCO)ME	S (F	' 0)	PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	1	2	3	
CO-1	2	1	1	2	1	1	1	1	1	3	2	
CO-2	2	1	1	2	1	1	1	1	1	3	2	
CO-3	2	1	1	2	1	1	1	1	1	3	2	
СО-4	2	1	1	2	1	1	1	1	1	3	2	
CO-5	2	1	1	2	1	1	1	1	1	3	2	
СО-6	2	1	1	2	1	1	1	1	1	3	2	
Average	2	1	1	2	1	1	1	1	1	3	2	

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 1 st Sem.
Course Title: Fundamentals of AI in Chemistry	Subject Code: TIU-PCH-L121
Contact Hours/Week: 1–0–2 (L–T–P)	Credit: 2

Enable the student to:

- 1. Understand AI fundamentals and their applications in chemistry, including machine learning techniques and molecular representation methods.
- 2. Develop computational skills using Python for molecular property prediction, classification, and generative modeling.
- 3. Explore advanced AI techniques such as neural networks and reinforcement learning for cheminformatics and future applications in chemistry.

COURSE OUTCOME :

On completion of the course, the student will be able to:

1		
CO-1:	Remember the fundamental concepts of AI, machine learning, and their applications in chemistry.	K1
CO-2:	Understand the molecular representation techniques and cheminformatics data types used in AI-driven chemical analysis.	К2
CO-3:	Apply the machine learning models, including regression and classification, to predict molecular properties.	КЗ
CO-4:	Analyze neural networks and reinforcement learning techniques in computational chemistry.	K4
CO-5:	Apply the Python-based computational experiments for molecular property prediction and compound classification.	К2
CO-6:	Apply the generative models for molecular design and explore future AI trends in chemistry.	КЗ

COURSE CONTENT :

MODULE 1:	Basic Fundamentals of AI in Chemistry	6 Hours						
Introduction to AI and its applications in chemistry, Fundamentals of machine learn								
(supervised a	nd unsupervised learning), Data types in chemistry and cher	ninformatics,						
Molecular rep	Molecular representation techniques, AI techniques: neural networks and reinforcement							
learning.	learning.							
MODULE 2:	Computational Experiments	24 Hours						
Setting up the	programming environment (Python), Predicting molecular pro	perties using						
regression m	odels, Classifying chemical compounds with classification	algorithms,						
Generative models for molecular generation, Future trends and applications in AI and								
chemistry.								
TOTAL LECT	URES	30 Hours						

BOOKS:

- 1. M. Mitchell, Artificial Intelligence: A Guide for Thinking Humans, 1st ed. (2019) Penguin Press.
- 2. C. Bishop, Pattern Recognition and Machine Learning, 1st ed. (2006) Springer.
- 3. A. R. Leach, Chemoinformatics: Principles and Applications, 2nd ed. (2019) Royal Society of Chemistry.
- 4. B. Ramsundar, Deep Learning for the Life Sciences, 1st ed. (2019) O'Reilly Media.
- 5. A. R. Leach et al., Chemistry Meets Machine Learning, 1st ed. (2020) Royal Society of Chemistry.

	PR	OGI	RAM	100	JTC	OME	S (P	'0)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	2	2	1			1	2	3	2
CO-2	3	2	2	2	1			1	2	3	2
CO-3	3	2	2	2	1			1	2	3	2
CO-4	3	2	2	2	1			1	2	3	2
CO-5	3	2	2	2	1			1	2	3	2
CO-6	3	2	2	2	1			1	2	3	2
Average	3	2	2	2	1			1	2	3	2

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 2 nd Sem.			
Course Title: Biological Chemistry	Subject Code: TIU-PCH-T132			
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3			

Enable the student to:

- 1. Understand the structure and function of biomolecules, including amino acids, proteins, enzymes, vitamins, lipids, carbohydrates, and nucleic acids.
- 2. Explore biochemical processes such as enzyme kinetics, gene expression, and metabolic pathways like glycolysis and oxidative phosphorylation.
- 3. Analyze the role of biomolecules in bioenergetics, molecular interactions, and physiological functions, including protein folding, enzyme regulation, and nucleic acid replication.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the structure, classification, and functions of biomolecules such as amino acids, proteins, enzymes, lipids, carbohydrates, and nucleic acids.	K1
CO-2:	Understand the biochemical processes, including enzyme kinetics, protein folding, and metabolic pathways like glycolysis and oxidative phosphorylation.	K2
CO-3:	Apply the knowledge of protein purification, sequencing techniques, and enzyme regulation in biochemical studies.	К3
CO-4:	Analyze the structural and functional aspects of DNA, RNA, and their role in gene expression, replication, and transcription.	K4
CO-5:	Analyze the interactions of biomolecules in biological systems, such as enzyme-substrate binding, vitamin coenzyme functions, and bioenergetics.	K4
CO-6:	Analyze the impact of biochemical processes in physiological functions, including protein denaturation, lipid metabolism, and molecular transport mechanisms.	K4

COURSE CONTENT :

MODULE 1:	Biomolecules	30 Hours							
Amino acids and Proteins: Amino acids (Structure, titration curve, iso-electric point,									
reactions involving amino acids) peptide bond, Structure of protein (Primary, secondary,									
tertiary and q	uartenery), Ramachandran plot, methods involved in C-/N-	- amino acid							
sequencing, Rea	actions (Ninhydrin reaction, Van Slyke reaction and others), De	enaturation of							
proteins, facto	rs effecting denaturation, structural aspect of protein wit	h respect to							

haemglobulin and myoglobulin. Methods involved in protein purification, Bruce-Merrifield reaction (artificial peptide synthesis), Oxygen uptake proteins: Hemerythrin and hemocyanin.

Enzymes: Classification, nomenclature, Kinetics of enzyme action, Enzyme inhibition, Regulation of enzyme (allosteric enzymes), isozymes, Enzyme active site, Metalloenzymes:Hydrolytic and redox enzymes: Carbonic anhydrase and superoxide dismutase, structure and function of Nickel and Zinc containing enzymes (Urease, Hydrogenase, Carboxy-peptidase etc.).

Vitamins and Hormones: Fat soluble and water soluble vitamins, Vitamins as coenzymes and co-factors, NAD, FAD, TPP, Folic acid, Vit.B6, Vit.B2, Lipoic acid, Co ASH, Epinephrine, nor epinephrine.

Lipids and Steroids: Principles of chromatography, Classification of chromatography, Paper chromatography, Techniques of column chromatography, Thin layer chromatography, Gas Chromatography, High-performance liquid chromatography, Ion chromatography.

Carbohydrates: Classification, structure, reactions and importance in biology.

MODULE 2: Nucleic Acids

8 Hours

Structure of nucleic acid-nitrogen base pairing with reference to adenine, guanine, cytosine, thymine and uracil, Structure of DNA (double helical structure), RNA, base pairing, m-RNA structure, t-RNA structure, Reaction (cyclitization reaction) DNA binding protein- Zinc finger protein. Replication, Transcription and translation, Regulation of gene expression.

MODULE 3:	Bioenergetics	4 Hours				
Bioenergetics (concept), Glycolysis, citric acid cycle (TCA), electron transport ch	nain, oxidative				
phosphorylation, Active and passive transport mechanism (pumps).						
TOTAL LECTU	RES	42 Hours				

BOOKS

- 1. L. Stryer, Biochemistry, 5th edition (2002), Freeman & Co., New York.
- 2. D. L. Nelson and M. M. Cox, Lehninger, Principles of Biochemistry, 3rd edition (2002) McMillan North Publication.
- 3. M. N. Hughes, Inorganic Chemistry of Biological Processes, (1981) John Wiley.
- 4. M. B. Smith, Organic Synthesis, (1995) McGraw Hill Inc., New York.
- 5. D. Voet, J. G. Voet, Biochemistry 3rd Edition (2004), Wiley International Publication.

	I	PROGR	AM OL	JTC	OM	ES ((PO))	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1			1	2	1	1
CO-2	3	3	2	2	1			1	2	1	1
CO-3	3	3	2	2	1			1	2	1	1
CO-4	3	3	2	2	1			1	2	1	1
CO-5	3	3	2	2	1			1	2	1	1
CO-6	3	3	2	2	1			1	2	1	1
Average	3	2.83	1.83	2	1			1	2	1	1

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 2 nd Sem.			
Course Title:Inorganic Chemistry	Subject Code: TIU-PCH-T106			
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3			

Enable the student to:

- 1. Understand the kinetics and mechanisms of substitution and electron transfer reactions in coordination complexes.
- 2. Explore the structure, bonding, and reactivity of metal carbonyls and related compounds using spectroscopic and theoretical approaches.
- 3. Analyze the chemistry of lanthanides and actinides, including their electronic structure, oxidation states, spectral properties, and separation techniques.

COURSE OUTCOME :

On completion of the course, the student will be able to:

P		
CO-1:	Remember the fundamental principles of substitution reactions, electron transfer mechanisms, and coordination chemistry.	K1
CO-2:	Remember the kinetics and mechanistic aspects of acid hydrolysis, base hydrolysis, and anation reactions in metal complexes.	K1
CO-3:	Apply crystal field and Marcus-Husch theories to determine the reactivity and stability of coordination compounds.	К3
CO-4:	Analyze the bonding, spectral characteristics, and reactivity of metal carbonyls and related species.	K4
CO-5:	Apply the electronic structures, oxidation states, and spectral features of lanthanides and actinides.	К3
CO-6:	Apply the separation methods and chemical properties of lanthanides and actinides based on their unique characteristics.	КЗ

COURSE CONTENT :

MODULE 1:	Kinetics and Mechanism of Substitution Reactions 12 Hours							
Nature of substitution reactions; prediction of reactivity of octahedral, tetrahedral and								
square-planar c	complexes in terms of crystal field activation energy and structur	re preference						
energy; rates of	reactions; acid hydrolysis, base hydrolysis and anation reaction	S.						
MODULE 2:	Electron Transfer Reactions	10 Hours						
Mechanism and	rate laws; various types of electron transfer reactions, Marcus-H	lusch theory,						
correlation bet	ween thermal and optical electron transfer reactions; iden	ntification of						
intervalence tra	intervalence transfer bands in solution.							
MODULE 3:	ODULE 3: Metal Carbonyls and related compounds 6 Hours							
Preparation, structure, and properties: bonding in metal carbonyls, variants of CO bridging,								
vibrational spectra of metal carbonyls, principal reaction types of metal carbonyls.								

MODULE 4:	Chemistr	12 Hours						
Nuclear	stability,	terrestrial	abundance	and				
distribution, relativistic effect, electronic configuration, oxidation states, aqueous-, redox-								
and complex-	chemistry, electron	ic spectra and	magnetic properties,	lanthanide and				
actinide contractions and their consequences, separation of lanthanides and actinides,								
organo-lanthanoids and actinoids.								
TOTAL LECTU	RES			40 Hours				

Books:

- 1. F. Basalo, R. G. Pearson, Mechanism of Inorganic Reactions, 2ndEdn. (1967), Wiley Eastern Ltd., New Delhi.
- 2. D. F. Shriver, P. W. Atkins, Inorganic Chemistry, 3rdEdn. (1999), ELBS, London.
- 3. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 6thEdn. (1999), John Wiley & Sons, New York.
- 4. D. N. Sathyanarayana, Electronic Absorption Spectroscopy and Related Techniques, Universities Press (India) Ltd., Hyderabad (2001).
- 5. Keith F. Purcell, John C. Kotz, Inorganic Chemistry, W. B. Saunders Com. (1987), Hong Kong.
- 6. Martin L. Tobe, John Burgess, Inorganic Reaction Mechanisms, Longmans 1stEdn. (1999).

	PF	ROGRA	M OUT	CO	ME	<mark>S (</mark> P	0)		PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1			1	2	1	1
CO-2	3	3	2	2	1			1	2	1	1
CO-3	3	3	2	2	1			1	2	1	1
CO-4	3	3	2	2	1			1	2	1	1
CO-5	3	3	2	2	1			1	2	1	1
CO-6	3	3	2	2	1			1	2	1	1
Average	3	2.83	1.83	2	1			1	2	1	1

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 2 nd Sem.				
Course Title: Organic Chemistry	Subject Code: TIU-PCH-T104				
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3				

Enable the student to:

- 1. Introduce the fundamental concepts of pericyclic reactions, including molecular orbital symmetry, selection rules, and stereochemical aspects.
- 2. Explain the mechanisms of esterification and ester hydrolysis, emphasizing steric and electronic effects in different reaction pathways.
- 3. Analyze the mechanisms and reactivity of electrophilic and nucleophilic aromatic substitution, elimination reactions, and enolate chemistry.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental principles of pericyclic reactions, including molecular orbital symmetry and classification.	K1
CO-2:	Understandt he stereochemical aspects and selection rules governing electrocyclic, cycloaddition, and sigmatropic rearrangement reactions.	К2
CO-3:	Apply the mechanistic concepts to esterification and ester hydrolysis, considering steric and electronic effects on reaction pathways.	К3
CO-4:	Analyze between electrophilic and nucleophilic aromatic substitution mechanisms and evaluate the factors affecting regioselectivity and reactivity.	K4
CO-5:	Analyze the elimination reaction mechanisms (E1, E2, and E1cB), predicting the orientation of double bonds and the competition between substitution and elimination.	K4
CO-6:	Analyze the formation and reactivity of enols and enolates, assessing their role in various organic transformations.	K4

COURSE CONTENT :

MODULE 1:		Pericyclic read	tions		14 Hours					
Molecular orbital symmetry, frontier orbitals of ethylene, 1,3-buta diene, 1,3,5-hexatriene										
and allyl systems. Classification of pericyclic reactions. Woodward-Hoffmann correlation										
diagrams. FMO and PMO approach, concept of aromaticity of pericyclic transition states.										
Selection rules and stereochemical aspects of electrocyclic reactions, cycloaddition and										
sigmatropic shifts. Electrocyclic reactions: conrotatory and disrotatory motions, 4n, 4n+2										
and allyl systems. Cycloaddition reactions: antarafacial and suprafacial additions, 4n and										
4n+2 systems;	2,2 addition	of ketenes,	1,3 dip	olar cycloadd	litions and					

cheleotropicreactions. Sigmatropic rearrangements: suprafacial and antarafacial shifts of H, sigmatropic shifts involving carbon moieties, 3,3- and 5,5-sigmatropic rearrangements. Sommelet-Hauser, Cope, Claisen, and aza-Cope rearrangements. Fluxional tautomerism. Ene reaction.

MODULE 2:Esterification and hydrolysis of ester6 HoursEvidence for tetrahedral intermediate in BAc2 and AAc2 mechanisms, steric and electroniceffects, the AAc1 and other pathways involving alkyl to oxygen bond cleavage.

MODULE 3: Substitution and elimination reactions 12 Hours

Electrophilic and nucleophilic aromatic substitution: Electrophilic aromatic substitution: The Arenium ion mechanism, orientation and reactivity in monosubstituted benzene rings, ortho/para ratio, Ipso substitution. Nucleophilic aromatic substitution: The Aromatic S_N^1 , S_N^2 and benzyne mechanisms. Reactivity-effect of substrate structure, leaving group, and attacking nucleophiles.

Elimination reaction mechanism: The E1, E2, and E1cB mechanisms, Orientation of double bond, Hoffman elimination, Saytzeff elimination, Hoffman versus Saytzeff elimination, Pyrolytic-*syn*-elimination, competition between substitution and elimination reactions.

MODULE 4:	Formation and reactions of enol and enolate 8 Hours							
Enol and enolate, Stable enol, consequence of enolization, Reactions with enols and								
enolates as intermediate, Stable enolate ions, Preparation of enol ether, Reactions of enol								
ethers.								
FOTAL LECTURES 40 Hou								

BOOKS

- 1. Clayden, Greeves, Warren, Wothers, Organic Chemistry, Oxford University Press, 2001.
- 2. M. B. Smith, Jerry March, Advanced Organic Chemistry, 5th Edition (2001), John Wiley & Sons, New York.
- 3. Peter Sykes, A Guide Book to Mechanism in Organic Chemistry, 6th Edition (1997), Orient Longman Ltd., New Delhi.
- 4. G. S. Zweifel, M. H. Nantz, Modern Organic Synthesis, (2007), Freeman and Company, New York.
- 5. S. M. Mukherjee, S.P. Singh, Reaction Mechanism in Organic Chemistry, 1st Edition (1990), Macmillan India Ltd., New Delhi.
- 6. T. H. Lowry, K. S. Richardson, Mechanism and Theory in Organic Chemistry, 3rd Edition (1998), Addison Wesley Longman Inc. (IS Edition).
- 7. S. M. Mukherjee, S. P. Singh, Pericyclic Reactions, MacMillan India, New Delhi.
- 8. I. Fleming, Pericyclic Reactions, Oxford University Press, Oxford (1999).

	PF	ROG	RAM C)UT	'CO	MES	5 (P	0)	PROGRAM S	PECIFIC OUTO	COMES (PSO)
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1			1	2	1	1
CO-2	3	3	2	2	1			1	2	1	1
CO-3	3	3	2	2	1			1	2	1	1
CO-4	3	3	2	2	1			1	2	1	1
CO-5	3	3	2	2	1			1	2	1	1
CO-6	3	3	2	2	1			1	3	1	1
Average	3	3	1.83	2	1			1	3	1	1

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 2 nd Sem.
Course Title: Physical Chemistry	Subject Code: TIU-PCH-T102
Contact Hours/Week: 3-0-0 (L-T-P)	Credit: 3

Enable the student to:

- 1. Introduce electrochemistry concepts like ion interactions, activity coefficients, and conductivity theories.
- 2. Explain surface chemistry topics such as adsorption, micellization, and surface reaction mechanisms.
- 3. Develop an understanding of quantum mechanics and its applications to chemical systems.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental electrochemical principles, including ion interactions and conductivity theories.						
CO-2:	Understand adsorption isotherms, micelle formation, and surface reaction mechanisms.						
CO-3:	Apply Debye-Hückel and Onsager theories to examine electrolyte solutions.						
CO-4:	Analyze the impact of surface reactions on heterogeneous catalysis.						
CO-5:	Apply quantum mechanical concepts and their applications in chemical systems.						
CO-6:	Analyze the approximation methods like perturbation and variation techniques in quantum mechanics.	K4					

COURSE CONTENT :

MODULE 1:	Electrochemistry	10 Hours					
Quantitative	treatment of Debye-Hückel theory of ion-ion interaction	and activity					
coefficient, ap	plicability and limitations of Debye-Hückel limiting law, its mo	dification for					
finite-sized ions, effect of ion-solvent interaction on activity coefficient. Debye-Hückel-							
Onsagar (D-H-O) theory of conductance of electrolyte solution, its applicability and							
limitations, Pair-wise association of ions (Bjerrum and Fuoss treatment), Modification of							
D-H-O theory	to account for ion-pair formation, Determination of association	constant (K _A)					
from conduct	ance data.						

MODULE 2:	Surface chemistry	12 Hours							
Reactions on surfaces: Adsorption, adsorption isotherms, unimolecular surface reaction,									
bimolecular s	urface reactions-reaction between a gas molecule and an adsorb	ed molecule,							
reaction betw	veen two adsorbed molecules, inhibition and activation ene	ergy of such							

reactions, volcano curve.

Transition state theory of surface reactions: Rates of chemisorptions and desorption, unimolecular and bimolecular surface reaction, comparison of homogeneous and heterogeneous reaction rates.

Micelles: Surface active agents and their classifications, micellization, factors affecting cmc of surfactants, Thermodynamics of micellization: phase separation and mass action models, micro-emulsions, reverse micelles.

MODULE 3:Quantum Mechanics20 HoursFundamentalsof quantum mechanics:Black-body radiation, photoelectric effect,Davison andGermer experiment, Franck-Hertz experiment, Young's double slitexperiment;identification of classical and quantum systems, Bohr's correspondenceprinciple with examples, the uncertainty principle.

Operators in quantum mechanics: Eigenvalues and eigenfunctions, Hermitian operator and its application. Postulates of quantum mechanics, Angular momentum of a one-particle system, and its commutative relations, Ladder operator, Pauli spin operator, Pauli spin matrices-spin eigenfunctions and their properties, Schrodinger wave equation and its formulation as an eigenvalue problem.

Quantum mechanical treatmenton various systems: Translational motion of a particle, particle in one and three dimensional boxes, harmonic-oscillator, rotational motion of a particle: particle on a ring, particle on a sphere, rigid rotator, step-potential and tunneling, hydrogen atom.

Approximation methods: Stationary perturbation theory for non-degenerate and degenerate systems with examples, Variation method.

TOTAL LECTURES	42 Hours

Books:

- 1. J. O'M. Bockris, A. K. N. Reddy, Modern Electrochemistry, Vol. 2 A & B, 2nd Edition, Plenum Press, New York (1998).
- 2. Samuel Glasstone, An Introduction To Electrochemistry, Affiliated East-West Press Pvt. Ltd.-New Delhi (2000)
- 3. A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications; 2nd Edition (2001), John Wiley & Sons, New York.
- 4. Y. Moroi, Micelles: Theoretical and Applied Aspects, Plenum Press, New York (1992).
- 5. P. W. Atkins, Physical Chemistry, 7th& 8th Editions, Oxford University Press, New York
- 6. I. N. Levine, Quantum Chemistry, 5th Edition (2000), Pearson Educ., Inc. New Delhi.
- 7. D. A. McQuarrie, J. D. Simon, Physical Chemistry, A Molecular Approach, (1998), Viva Books, New Delhi.

]	PROG	RAM O	UT	'COI	MES	PROGRAM SPECIFIC OU	гсо	MES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1			1	2	1	1
CO-2	3	3	2	2	1			1	2	1	1
CO-3	3	3	2	2	1			1	2	1	1
CO-4	3	3	2	2	1			1	2	1	1
CO-5	3	3	2	2	1			1	2	1	1
CO-6	3	3	2	2	1			1	2	1	1
Average	3	3	1.83	2	1			1	2	1	1

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 2 nd Sem.
Course Title:Inorganic Chemistry Lab-II	Subject Code: TIU-PCH-L116
Contact Hours/Week : 0–0–4 (L–T–P)	Credit: 2

The course aims to provide practical skills on (i) qualitative and quantitative estimation of varieties of ions and selected compounds in solution; (ii) syntheses, purification and characterizations of inorganic metal complexes, polymers, and macrocycles.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the fundamental principles of complex formation and mole ratio methods.	K2
CO-2:	Understand the principles of colorimetric analysis in studying reaction kinetics.	K2
CO-3:	Apply chromatographic techniques to separate acetylated ferrocene derivatives.	К3
CO-4:	Analyze the photochemical properties and stability of potassium trioxalato ferrate (III).	K4
CO-5:	Apply <i>cis</i> - and <i>trans</i> -isomers of cobalt complexes and compare their characteristics.	К3
CO-6:	Analyze the experimental data to evaluate coordination chemistry and reaction mechanisms.	K4

COURSE CONTENT :

Experiment 1: Determination of composition of complexes by continuous variation of mole ratios.

Experiment 2: A colorimetric study of the kinetics on inorganic reaction.

Experiment 3: Acetylation of ferrocene and separation of the acetyl derivative by column chromatography

Experiment 4: Sythesis, analysis and photochemistry of Potassium trioxaltoferrate (III).

Experiment 5: Preparation of *cis*- and *trans*-[Co(en)₂Cl₂]Cl.

TOTAL LECTURES

56 Hours

Books:

- 1. Vogel, A.I. Vogel's Textbook of Quantitative Chemical Analysis, 6th ed., 2021, Pearson Education Limited.
- 2. Elias, A.J. A Collection of Interesting General Chemistry Experiments, 2nd ed., 2020, Sangam Books.
- 3. Mukherjee, G.N. Advanced Experiments in Inorganic Chemistry, 2nd ed., 2018, U.N. Dhur & Sons (P) Ltd.

	PR	OGI	RAM	I OU	TCO	OME	S (F	0)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	2	1	1	2	1	1	1	1	1	3	2
CO-2	2	1	1	2	1	1	1	1	1	3	2
CO-3	2	1	1	2	1	1	1	1	1	3	2
CO-4	2	1	1	2	1	1	1	1	1	3	2
CO-5	2	1	1	2	1	1	1	1	1	3	2
CO-6	2	1	1	2	1	1	1	1	1	3	2
Average	2	1	1	2	1	1	1	1	1	3	2

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 2 nd Sem.		
Course Title:Organic Chemistry Lab-II	Subject Code: TIU-PCH-L114		
Contact Hours/Week : 0–0–4 (L–T–P)	Credit: 2		

In this course students get the training on synthesis, extraction, purification and characterization of some important organic compounds.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental principles of separation techniques for organic compounds.	K1
CO-2:	Understand the methodologies used in steam distillation, photo- isomerization, and thin-layer chromatography.	К2
CO-3:	Apply chromatographic techniques to separate and analyze plant pigments.	К3
CO-4:	Analyze the effectiveness of paper and column chromatography in isolating natural compounds.	K4
CO-5:	Apply the extraction and purification of caffeine from tea leaves using solvent extraction techniques.	К3
CO-6:	Analyze the experimental results to identify organic compounds in binary mixtures.	K4

COURSE CONTENT :

Experiment 1: Separation of binary mixtures of solid-solid/liquid-solid/liquid-liquid organic

compounds and identification of individual components by chemical methods.

Experiment 2: Techniques of organic chemistry: Experiments involving steam distillation, photo-isomerisation and thin layer chromatography etc.

Experiment 3: Paper and column chromatography of plant pigments

Experiment 4: Isolation of caffeine from tea leaves

TOTAL LECTURES

56 Hours

Books:

- 1. Middleton, H. Systematic Organic Qualitative Analysis, 2nd ed., 1995, Prentice Hall.
- 2. Vogel, A.I. Qualitative Organic Analysis, 5th ed., 1989, Longman Scientific & Technical.
- 3. Benson, J. A. Laboratory Experiments in Organic Chemistry, 4th ed., 2014, Cengage Learning.
- 4. Lloyd, D. Practical Organic Chemistry, 2nd ed., 2005, Wiley.

	PR	OGI	RAM	I O U	ТСС	OME	E <mark>S (</mark> P	0)	PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	1	2	3	
CO-1	2	1	1	2	1	1	1	1	1	3	2	
CO-2	2	1	1	2	1	1	1	1	1	3	2	
CO-3	2	1	1	2	1	1	1	1	1	3	2	
CO-4	2	1	1	2	1	1	1	1	1	3	2	
CO-5	2	1	1	2	1	1	1	1	1	3	2	
CO-6	2	1	1	2	1	1	1	1	1	3	2	
Average	2	1	1	2	1	1	1	1	1	3	2	

Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 2 nd Sem.			
Course Title: Physical Chemistry Lab-II	Subject Code: TIU-PCH-L112			
Contact Hours/Week: 0-0-4 (L-T-P)	Credit: 2			

Enable the student to:

Develop practical skills in electrochemical and physicochemical analysis through conductometric, potentiometric, and phase equilibrium experiments.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the principles of conductometric and potentiometric techniques in chemical analysis.	K1
CO-2:	Understand the kinetics of saponification and ion conductivity in electrolyte solutions.	K2
CO-3:	Apply conductometric methods to determine the strengths of acids in a mixture.	К3
CO-4:	Analyze the critical micelle concentration (CMC) of surfactants using conductometry.	K4
CO-5:	Apply the acid-base neutralization process using potentiometric titration.	К3
CO-6:	Apply the phase diagrams for a three-component system to understand liquid-liquid equilibria.	К3

COURSE CONTENT :

Experiment 1: Conductometric study of the kinetics of Saponification of methyl/ethyl acetate
 Experiment 2: Determination of equivalent conductance at infinite dilution of KCl at room temperature
 Experiment 3:Determination of strengths of strong and weak acids in a mixture conductometrically
 Experiment 4: Determination of CMC of a surfactant by conductometric method
 Experiment 5: Potentiometric titration of a strong acid with strong base using quinhydrone electrode
 Experiment 6: To construct the phase diagram of a three component system: Chloroform-acetic acid-water
 TOTAL LECTURES

Books:

- 1. James, A.M., Prichard, F.F. Practical Physical Chemistry, 3rd ed., 2021, Prentice Hall.
- 2. Levitt, B.P. Findlay's Practical Physical Chemistry, 10th ed., 2020, Prentice Hall.
- 3. Shoemaker, D.P., Haile, J., Moeller, W.J. Experimental Physical Chemistry, 3rd ed., 2014, Prentice Hall.

	PR	OGI	RAM	I OU	ТСС)ME	S (P	0)	PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	1	2	3	
CO-1	2	1	1	2	1	1	1	1	1	3	2	
CO-2	2	1	1	2	1	1	1	1	1	3	2	
CO-3	2	1	1	2	1	1	1	1	1	3	2	
CO-4	2	1	1	2	1	1	1	1	1	3	2	
CO-5	2	1	1	2	1	1	1	1	1	3	2	
CO-6	2	1	1	2	1	1	1	1	1	3	2	
Average	2	1	1	2	1	1	1	1	1	3	2	
Program: M. Sc. Chemistry	Year, Semester: 1 st Yr., 2 nd Sem.											
--	--											
Course Title:Applications of AI in Chemistry	Subject Code:TIU-PCH-L122											
Contact Hours/Week : 1–0–2 (L–T–P)	Credit: 2											

Enable the student to:

- 1. Introduce fundamental AI concepts and their applications in chemical analysis and material discovery.
- 2. Develop skills in AI-driven data analysis, reaction prediction, and cheminformatics for drug discovery.
- 3. Explore real-world AI applications, ethical considerations, and future trends in chemistry.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the fundamental AI principles and their applications in chemical analysis and research.	K1
CO-2:	Remember the AI techniques used in spectroscopic data analysis, reaction prediction, and material discovery.	K2
CO-3:	Apply machine learning models to analyze chemical data and predict reaction outcomes.	К3
CO-4:	Analyze QSAR models and molecular docking techniques for drug discovery and virtual screening.	K4
CO-5:	Analyze the AI-driven approaches for environmental modeling and pollutant behavior prediction.	K4
CO-6:	Apply ethical considerations and future trends in AI applications within chemistry.	K3

COURSE CONTENT :

MODULE 1:	Overview of AI principles and relevance in chemical	10 Hours				
	analysis					
Spectroscopic Data Analysis: AI techniques for interpreting NMR, IR, and mass spectrometry						
data, Hands-on se	ession using Python libraries for data analysis.					

Chemoinformatics in Drug Discovery: Introduction to QSAR models and molecular docking, Applications in virtual screening and target identification.

AI in Reaction Prediction: Machine learning models for predicting chemical reactions and optimizing conditions.

Material Discovery and Design: AI applications in discovering new materials and optimizing polymer properties.

Environmental Applications: Use of AI to model pollutant behavior and predict environmental

impacts.									
MODULE 2:	Computational Experiments	20 Hours							
Case Studies in	AI Applications: In-depth analysis of successful AI project	s in various							
chemistry sector	chemistry sectors.								
Future Trends in	Future Trends in AI: Explore emerging technologies and their potential impact on the field of								
chemistry.									
Ethical Considerations: Discuss ethical implications of AI in chemical research, including bias									
and data privacy.									
TOTAL LECTUR	ES	30 Hours							

Books:

- 1. D. S. Johnson, AI Techniques in Chemical Analysis: Data Interpretation and Spectroscopy, 2nd ed. (2021) Wiley, Hoboken.
- 2. V. G. Arora, Chemoinformatics: Methods and Applications in Drug Discovery, 1st ed. (2020) Springer, Cham.
- 3. H. T. Nguyen, Machine Learning for Reaction Prediction and Optimization, 1st ed. (2023) Elsevier, Amsterdam.
- 4. L. J. O. F. Mathews, AI-Driven Material Discovery and Design: Principles and Applications, 3rd ed. (2022) Academic Press, San Diego.
- 5. S. R. I. K. Patel, Environmental Chemistry and AI: Modeling Pollutants and Impact Predictions, 1st ed. (2023) Royal Society of Chemistry, Cambridge.

	PROGRAM OUTCOMES (PO)								PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	1	2	3	
CO-1	3	2	2	2	1		2	1	2	3	2	
CO-2	3	2	2	2	1		2	1	2	3	2	
CO-3	3	2	2	2	1		2	1	2	3	2	
CO-4	3	2	2	2	1		2	1	2	3	2	
CO-5	3	2	2	2	1		2	1	2	3	2	
CO-6	3	2	2	2	1		2	1	2	3	2	
Average	3	2	2	2	1		2	1	2	3	2	

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.			
Course Title:Spectroscopy-I and Polymers	Subject Code: TIU-PCH-T223			
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4			

Enable the student to:

- 1. Introduce fundamental spectroscopic techniques and their interaction with matter, including rotational, vibrational, and electronic spectroscopy.
- 2. Explain the principles and applications of laser spectroscopy, photoelectron spectroscopy, diffraction methods, and magnetic resonance techniques.
- 3. Discuss polymerization kinetics, molecular weight determination, and thermodynamic aspects of polymer solutions.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental concepts of electromagnetic radiation interaction with matter and selection rules in spectroscopy.	K1							
CO-2:	Understand the principles of rotational, vibrational, Raman, and electronic spectroscopy, including spectroscopic instrumentation.								
CO-3:	ApplyApplyaser spectroscopy techniques for molecular analysis and investigate photoelectron spectroscopy and diffraction methods.								
CO-4:	Analyze nuclear magnetic resonance (NMR) principles, relaxation times, chemical shifts, and multi-pulse techniques.								
CO-5:	Analyze the different polymerization mechanisms, molecular weight determination methods, and thermodynamic aspects of polymer solutions.	K4							
CO-6:	Apply thrspectroscopic data to determine molecular structure, bonding, and reaction dynamics.	К3							

COURSE CONTENT :

MODULE 1:Rotational and vibrational spectroscopy12 HoursIntroduction:Interaction of electromagnetic radiation with matter, Einstein coefficient,
transition probability, transition dipole moments and selection rules, line-widths and line
shapes, Fourier Transforms in spectroscopy.12 Hours

Rotational and rotation-vibrational spectroscopy: Microwave and Infrared spectroscopy

of di- and polyatomic molecules, eigen values and eigenstates, selection rules, normal coordinates and their symmetry (CO_2), vibration and group frequency, FT-IR instrumentation.

Raman spectroscopy: Raman Effect (basic principles only), rotational and rotation-vibrational Raman transitions, nuclear spin effects, polarization of Raman lines.

MODULE 2:Electronic spectroscopy, lasers and diffraction methods16 HoursElectronic spectroscopy:Vibronic spectroscopy of diatomic molecules, Franck-Condonfactor, dissociation and pre-dissociation, rotational fine structure, solvent effects.

Lasers in spectroscopy: Principles of laser action, laser characteristics, population inversion, Basic elements in laser (resonator, gain medium, pumping technique), pulsed lasers, laser cavity modes, Q-switching, mode locking, harmonic generation, different lasers: He-Ne, Nd-YAG, titanium-sapphire, dye lasers, semiconductor lasers, and applications of lasers.

Photoelectron Spectroscopy and Diffraction Methods: Photoexcitation and photoionization, core level (XPS, ESCA) and valence level (UPS) photoelectron spectroscopy, XPS and UPS of molecules; Principle of electron, neutron and X-ray diffraction methods in determining the structure of molecules, synchrotron.

	0					-	
	6 Hours						
onance: A revi	ew of spin an	gular m	noment	um, basi	c princip	oles an	d relaxation
ty of NMR sign	als, electronio	c shield	ing, NM	IR in liqu	uids: che	emical	shifts, spin-
lings, NMR	spectra	of	AX,	A_3X	and	AB	systems.
5 [1	sonance: A revi ity of NMR sign lings, NMR	NMR sonance: A review of spin an ity of NMR signals, electronic lings, NMR spectra	NMR spectrosonance: A review of spin angular mity of NMR signals, electronic shieldolings, NMR spectra of	NMR spectroscopysonance: A review of spin angular momentity of NMR signals, electronic shielding, NMblings, NMR spectra of AX,	NMR spectroscopysonance: A review of spin angular momentum, basicity of NMR signals, electronic shielding, NMR in liquolings, NMR spectra of AX, A3X	NMR spectroscopysonance: A review of spin angular momentum, basic principity of NMR signals, electronic shielding, NMR in liquids: cheolings, NMR spectra of AX, A3X and	NMR spectroscopysonance: A review of spin angular momentum, basic principles an ity of NMR signals, electronic shielding, NMR in liquids: chemical blings, NMR spectra of AX, A3X and AB

FT-NMR: Rotating frame of reference, effect of RF pulses, FID, Multi pulse operation, measurement of T_1 by inversion recovery method, spin echo and measurement of T_2 .

MODULE 4:	Polymers	10 Hours					
Polymer clas	sification; two-dimensional polymerization kinetics; conde	nsation and					
addition poly	mers; co-polymerization, chain transfer, initiation, propa	agation, and					
termination; types of molecular weights of polymers and their determination; heat,							
entropy, and f	ree energy of mixing of polymer solutions.						
TOTAL LECT	JRES	44 Hours					

Books:

- 1. J. M. Hollas, Modern Spectroscopy, 4_{th}edition (2004) John Wiley & Sons, Ltd., Chichester.
- 2. C. N. Banwell and E.M. Mc Cash, Fundamentals of Molecular Spectroscopy, 4thedition (1994), Tata McGraw Hill, New Delhi.
- 3. A Carrington and A. D. Mc Lachlan, Introduction to Magnetic Resonance, (1979) Chapman and Hall, London.
- 4. R. K. Harris, Nuclear Magnetic Resonance Spectroscopy, (1986) Addison Wesley, Longman Ltd, London.
- 5. G. Herzburg, Infrared and Raman Spectra (1945), Spectra of Diatomic Molecules (1950), Van Nostrand, New York.
- 6. F. W. Billmayer, Jr., Text Book of Polymer Science, 3rd Edition (1984), Willey-Interscience, New York.
- 7. G. Odian, Principles of Polymerization, 3rd Edition (1991), John Wiley, Singapore.
- 8. P. Bahadur, N.V. Sastry, Principle of Polymer Sciences, Narosa Publishing House, New Delhi (2002)
- 9. V.R. Gowarikar, N.V. Vishwanathan, J. Shreedhar, Polymer Sciences, Wiley Eastern, New Delhi (1986)

	PROGRAM OUTCOMES (PO)								PROGRAM S	PECIFIC OUT	COMES (PSO)
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1			1	3	2	1
CO-2	3	3	2	2	1			1	3	2	1
CO-3	3	3	2	2	1			1	3	2	1
CO-4	3	3	2	2	1			1	3	2	1
CO-5	3	3	2	2	1			1	3	2	1
CO-6	3	3	2	2	1			1	3	2	1
Average	3	3	2	2	1			1	3	2	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title: Organometallic Chemistry of Transition Metals	Subject Code: TIU-PCH-T215
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

Enable the student to:

- 1. Understand the structure and bonding of organometallic compounds.
- 2. Analyze their reactions and catalytic applications.
- 3. Apply organometallic principles in chemistry and materials science.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the structure and bonding patterns of various organometallic compounds.	K1
CO-2:	Understand the reaction mechanisms of organometallic complexes, including oxidative addition and reductive elimination.	K2
CO-3:	Apply the role of transition metal compounds in catalytic processes like hydrogenation and polymerization.	К3
CO-4:	Analyze the stereochemical non-rigidity and fluxional behavior of organometallic compounds.	K4
CO-5:	Analyze the different C-C and C-N coupling reactions in organic synthesis.	K4
CO-6:	Apply the principles of molecular magnetism to understand the properties of magnetic materials.	К3

COURSE CONTENT :

MODULE 1:	Structure and bonding of various types of organometallic	20 Hours			
	compounds				
Application of 2	18- electron and 16- electron rules; metal complexes of d	ioxygen and			
dinitrogen, nitro	osyl, and phosphines; structure, bonding (pictorial mo-app	proach) and			
reactions of η^2 -e	thylinic , η^3 -allylic and η^5 -cyclo-pentadineyl compounds: K[Pt($[\eta^2 - C_2 H_4) Cl_3],$			
[(η ³ -C ₃ H ₅)PdCl] ₂ ,	$(\eta^{5}- C_{5}H_{5})_{2}Fe]$; carbene and carbyne complexes, Stereo-chemica	l non rigidity			
and fluxional be	havior of organo-metallic compounds with typical examples;	Metal-metal			
single and multi	ple bonding (pictorial mo –approach), bond orders, bonding i	n direhnium			
compounds; isolo	bal relationship and its applications.				
MODULE 2:	Transition metal compounds in catalysis	10 Hours			
Substitution, ins	Substitution, insertion, oxidative addition, reductive elimination, insertion and elimination;				
electrophilic and nucleophilic reactions of coordinated ligands; metal hydrides (classical and					
non-classical), Agostic interaction, applications of NMR in studying hydrido complexes;					
stereochemical n	on-rigidity and fluxional behaviour of organometallic compound	S.			
MODULE 3:	Transition metal compounds in catalysis	10 Hours			

Hydrogenation, hydroformylation and polymerization; catalysis by organometallic, CH functionalizations. C-C and C-N coupling reactions (Suzuki, Heck, Negishi, Kumada, Hiama and Stille etc), asymmetric hydrogenations; metathesis reactions of alkenes and alkynes.

MODULE 4:	Molecular Magnetic Materials	4 Hours	
Types of magnet	tic interactions, inorganic and organic ferro-magnetic materia	ls, low-spin–	
high-spin transitions, molecular magnets and applications.			
TOTAL LECTUR	ES	44 Hours	

Books:

- 1. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 6th Ed. (1999) John Wiley & Sons, NY.
- 2. J. E. Huheey, Keiter and Keiter, Inorganic Chemistry.
- 3. R. H. Crabtree, The Organometallic Chemistry of Transition Metals, John Wiley.
- 4. Ch. Elschenbroich and A. Salzer, Organometallics, VCH.
- 5. J. P. Collman, L. S. Hegedus, J. R. Norton and R.G. Finke, Principles and Applications of Organotransition metal Chemistry, Univ. Sci. Books, Mill Valley. California.
- 6. Oliver Kahn, Molecular Magnetism, VCH, Weinheim (1993).
- 7. R. S. Drago, Physical Methods in Chemistry, International Edition (1992), Affiliated East-West Press, New Delhi.

	PROGRAM OUTCOMES (PO)								PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1			1	3	2	1
CO-2	3	3	2	2	1			1	3	2	1
CO-3	3	3	2	2	1			1	3	2	1
CO-4	3	3	2	2	1			1	3	2	1
CO-5	3	3	2	2	1			1	3	2	1
CO-6	3	3	2	2	1			1	3	2	1
Average	3	2.83	1.83	2	1			1	3	2	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title: Advanced Bioinorganic Chemistry	Subject Code: TIU-PCH-T217
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

Enable the student to:

Impart knowledge on different aspects of bioinorganic chemistry including (i) importance of metal ions in biology, (ii) structure and activity of various metalloproteins, and (iii) applications of metal complexes in medicine and toxic effects of some metals.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the essential and trace metal ions in biological systems and their roles in biological processes.	K1
CO-2:	Understand the mechanisms of ion transport across biological membranes, including the Na^+/K^+ ion pump.	K2
CO-3:	Apply the structures and functions of dioxygen transport and storage proteins like hemoglobin, myoglobin, hemocyanin, and hemerythrin.	К3
CO-4:	Analyze the functions of electron transfer proteins such as cytochromes, ferredoxins, and cytochrome c oxidase.	K4
CO-5:	Analyze the mechanisms of metalloenzymes like catalase, peroxidase, SOD, and cytochrome C oxidase.	K4
CO-6:	Apply the toxicity of metal ions and the therapeutic applications of metal complexes in medicine.	К3

COURSE CONTENT :

MODULE 1:	Metal ions in biology	12 Hours				
Essential and tra	ace elements in the biological systems, metal of life, basic rea	ctions in the				
biological system	ns and the roles of metal ions in biological process. Ion trans	port (active)				
across biological	membrane and its significance, mechanism of Na ⁺ K ⁺ -ion pump.					
MODULE 2:	Metalloproteins in biology	24 Hours				
Transport and	storage of dioxygen: Active site structures and bio functions	of O ₂ -uptake				
proteins: hemog	lobin, myoglobin, hemocyanin and hemerythrin; model synthe	etic dioxygen				
complexes.						
Electron transf	Electron transfer in biology: Active site structures and functions of cytochromes,					
cytochrome <i>c</i> ; iro	cytochrome <i>c</i> ; iron-sulfur proteins (ferredoxines). cytochrome c oxidase.					
Metalloenzymes: Catalase, peroxidase, superoxide dismutase (SOD), cytochrome C oxidase,						
carbonic anhydra	ase, carboxypeptidase.					
Redox enzymes	: Photosynthesis and chlorophylls, photosystem-I and photos	ystem-II and				

their roles in cleavage of water. Model systems. Biological and abiological nitrogen fixing

systems. Molybdo enzymes: nitrate reductases, sulfite oxidase.					
MODULE 3:	Toxicity and drugs	8 Hours			
Toxic effects of n metal complexes	netal ions, detoxification by chelation therapy, metal dependent as drugs, Pt, Ru, Rh and Au drugs.	diseases and			
TOTAL LECTURES					

Books:

- 1. M. N. Hughes, Inorganic Chemistry of Biological Processes, 2nd Ed. (1981), John-Wiley & Sons, New York.
- 2. W. Kaim and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, An Introduction and Guide, Wiley, New York (1995).
- 3. S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry, University Science Books, (1994).
- 4. I. Bertini, H. B. Grey, S. J. Lippard and J. S. Valentine, Bioinorganic Chemistry, Viva Books Pvt. Ltd., New Delhi (1998).

	PROGRAM OUTCOMES (PO)								PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1			1	3	2	1
CO-2	3	3	2	2	1			1	3	2	1
CO-3	3	3	2	2	1			1	3	2	1
CO-4	3	3	2	2	1			1	3	2	1
CO-5	3	3	2	2	1			1	3	2	1
CO-6	3	3	2	2	1			1	3	2	1
Average	3	2.83	1.83	2	1			1	3	2	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title: Advanced Organic Chemistry-I	Subject Code: TIU-PCH-T211
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

Enable the student to:

- 1. Understand the principles of organic photochemistry and key photochemical reactions.
- 2. Explore important organic reactions and their applications in synthesis.
- 3. Apply synthetic strategies using phosphorus, silicon, and sulfur compounds in organic chemistry.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the principles of organic photochemistry, including energy transfer and reaction pathways.	K1
CO-2:	Understand the mechanisms of photochemical transformations, including rearrangements and functionalization.	K2
CO-3:	Apply key organic reactions such as Hydroboration, Wittig, and Diels-Alder in synthetic strategies.	K3
CO-4:	Apply the role of photochemical and redox reactions in organic synthesis.	К3
CO-5:	Analyze the application of phosphorus, silicon, and sulfur compounds in synthetic organic chemistry	K4
CO-6:	Apply retrosynthetic approaches for designing complex organic molecules with stereochemical considerations.	К3

COURSE CONTENT :

MODULE 1:	Organic Photochemistry-I	8 Hours			
Photochemical e	nergy, Jablonski diagram, photosensitisation and quenching, No	orrish Type-I			
and Type-II proc	cesses, Paterno-Buchi reaction, photochemistry of unsaturated	compounds:			
rearrangement o	f unsaturated compounds; photo-induced reactions in aromatic of	compounds.			
MODULE 2:	Organic Photochemistry-II	10 Hours			
Photo-induced fu	Photo-induced functionalisation in organic molecules involving Barton reaction, Hofmann-				
Loffler-Freytag	Loffler-Freytag reaction; photochemical rearrangements, photo induced disproportion				
reaction, photo	reaction, photo induced substitution reaction in aromatic systems, chemiluminescence in				
organic reactions	S.				
MODULE 3:	Application of Important Organic Reactions in Organic	10 Hours			
	Synthesis				

Application of Important Organic Reactions in Organic Synthesis, Hydroboration, Wittig Reaction, Birch Reduction, Grignard Reaction, Diels-Alder Reaction, Esterification and Amidation, Friedel-Crafts Acylation, Friedel-Crafts Alkylation.

MODULE 4:	Organic Synthetic Chemistry	16 Hours				
Organic synthetic process and uses of Phosphorus, Silicone and Sulphur compounds in						
synthetic organi	synthetic organic chemistry, Planning a synthetic pathway; molecular characteristics:					
Retrosynthesis; method of formation of carbon skeleton: carbon to carbon bond formations,						
logistic and stereochemistry. Phospho ylide and sulphur ylide.						
TOTAL LECTUR	ES	44 Hours				

Books:

- 1. T. H. Lowry and K. C. Richardson, Mechanism and Theory in Organic Chemistry, 3rdEdn, Harper and Row, New York, 1998.
- 2. H. O. House, Modern Synthetic Reactions, 2ndEdn, Benjamin, 1971.
- 3. W. Caruthers, Modern Methods of Organic Synthesis, 3rdEdn, Cambridge University Press, Cambridge, 1996.
- 4. J. Clayden, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry, Oxford University Press, Oxford, 2001.
- 5. O. L. Chapman, Some Aspects of Organic Photochemistry, Dekker, 1967.
- 6. J. M. Coxon and B. Halton, Organic Photochemistry, Cambridge University Press, Cambridge, 1974.
- 7. R. O. C. Norman and J. M. Coxon, Principles of Organic Synthesis, 3rdEdn, ELBS, 2003.
- 8. J. Singh and J. Singh, Photochemistry and Pericyclic Reactions, 3rdEdn, New Age International (P) Ltd, India, 2012.
- 9. A. Griesbeck, M. Oelgemoller and F. Ghetti, Organic Photochemistry and Photobiology, 3rd Edn, Vol I, CRC Press, Boca Raton, FL, 2012.
- 10. H.O. House, Modern Synthetic Reactions, 2nd Edition (1972), Benjamin/Cummings Publishing Company, California.
- 11. L.F. Fieser and M. Fieser, Reagents for Organic Synthesis, Vol. 1-16 (Vol. 1, 1967), Wiley-

Interscience, New York.

- 12. M.B. Smith and J. March, March's Advanced Organic Chemistry Reactions, Mechanisms & Structure, 5th ed. (2001), Wiley-Interscience, New York.
- 13. M. B. Smith, Organic Synthesis, McGraw Hill Inc., New York (1995).
- 14. J. Clayden, N. Greeves, S. Warren, and E. Wothers, Organic Chemistry, Oxford Univ. Press, Oxford (2001).
- 15. P. R. Jenkins, Organometallic Reagents in Synthesis, Oxford science Publ., Oxford (1992)

	J	PROGR	AM OU	JTC	OM	ES ((PO))	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1			1	3	2	1
CO-2	3	3	2	2	1			1	3	2	1
CO-3	3	3	2	2	1			1	3	2	1
CO-4	3	3	2	2	1			1	3	2	1
CO-5	3	3	2	2	1			1	3	2	1
CO-6	3	3	2	2	1			1	3	2	1
Average	3	2.83	1.83	2	1			1	3	2	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title: Advanced Organic Chemistry-II	Subject Code: TIU-PCH-T213
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

Enable the student to:

- 1. Understand the synthesis and reactivity of heterocyclic compounds.
- 2. Explore the structure and chemistry of steroids and prostanoids.
- 3. Analyze the classification and reactions of natural products.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the synthesis and structural features of various heterocyclic compounds.	K1
CO-2:	Understand the chemistry and synthesis of steroids and prostanoids.	K2
CO-3:	Understand the structural classification and reactivity of alkaloids, terpenoids, and carotenoids.	K2
CO-4:	Apply retrosynthetic approaches to the synthesis of selected natural products.	К3
CO-5:	Analyze the stereochemical aspects and reaction mechanisms of bioactive compounds.	K4
CO-6:	Apply the synthetic strategies for complex natural products based on their molecular framework.	КЗ

COURSE CONTENT :

MODULE 1:	Chemistry of heterocycles	18 Hours										
Synthesis, struc	Synthesis, structure and reactions of the following heterocyclic compounds:											
(a) Three-membered rings: Aziridines.												
(b) Four-member	(b) Four-membered rings: Azetidines and their 2-oxo derivatives.											
(c) Five-member	(c) Five-membered rings containing two heteroatoms: Oxzoles, Imidazoles, Thiazoles, Isoxazoles,											
Pyrazoles.	Pyrazoles.											
(d) Pyrimidines.												
(e) Purines: Uric	acid and Caffeine.											
(f) Five-membere	ed ring heterocycles with three or four heteroatoms											
MODULE 2:	Steroids and Prostanoids	6 Hours										
Diels' hydrocarb	on, Cholesterols, Chemistry, elucidation of structure and syn	nthesis; Bile acids,										
Androsteron, Est	rone											
MODULE 3:	Chemistry of natural products	18 Hours										
Alkaloids, terpen	oids, and carotinoids: structural classification, structure d	letermination, and										
reactions. Synthes	ses, stereochemistry, and reactions of terpenoids and carote	noids, including β -										

carotene, abietic acid, santonin, and zingiberine. Stereochemistry, syntheses and reactions of selective alkaloids such as quinine, morphine, camptothecin, and newly identified bioactive natural compounds.

TOTAL LECTURES

42 Hours

Books:

- 1. T. L. Gilchrist, Heterocyclic Chemistry, 3rd Edition (1997) Addison-Wesley Longman Ltd., England
- 2. R. K. Bansal, Heterocyclic Chemistry: Syntheses, Reactions and Mechanisms, 3rd Edition (1999), New Age International, Publisher, New Delhi.
- 3. A. R. Katritzky, C. A. Ramsden, J.A. Joule and V. V. Zhdankin, Handbook of Heterocyclic Chemistry, 3rd Edition (2010), Elsevier, Oxford, UK.
- 4. Heterocyclic Chemistry, 4th edition, J. A. Joule and K. Mills, Blackwell Publishing, Indian Reprint 2004.
- 5. Heterocyclic Chemistry Vol-III,III, 1st edition. R.R. Gupta, M. Kumar, V. Gupta Springer-Verlag, Berlin Heidelberg Publication (2005)
- 6. Aromatic Heterocyclic Chemistry: David T. Davies, (1992), Oxford University Press.
- 7. Classics in Total Synthesis (Vol I) K.C. Nicolaou and E.J. Sorensen, Wiley-VCH
- 8. Classics in Total Synthesis II K.C. Nicolaou and S.A. Snyder Wiley-VCH

				ITC	~~	TC (<u> </u>	DDOCDAMC		
	ł	YKUGK		JIC	UM	ES (PO)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1			1	3	2	1
CO-2	3	3	2	2	1			1	3	2	1
CO-3	3	3	2	2	1			1	3	2	1
CO-4	3	3	2	2	1			1	3	2	1
CO-5	3	3	2	2	1			1	3	2	1
CO-6	3	3	2	2	1			1	3	2	1
Average	3	2.83	1.83	2	1			1	3	2	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title: Quantum Mechanics and Chemical Applications of Group Theory	Subject Code: TIU-PCH-T207
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

Enable the student to:

- 1. Develop a deep understanding of quantum chemistry and advanced methods for solving many-body systems.
- 2. Utilize group theory principles to analyze molecular symmetry, structure, and spectroscopic properties.
- 3. Integrate quantum mechanics and group theory to interpret molecular bonding, hybridization, and electronic transitions.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental postulates of quantum mechanics and approximation methods for solving many-body systems.	K1						
CO-2:	Understand the application of quantum mechanical models to many-electron atoms and molecular structures.							
CO-3:	Apply group theory to determine molecular symmetry and its impact on vibrational spectroscopy.	К3						
CO-4:	Analyze the selection rules for infrared and Raman spectroscopy using symmetry considerations.	K4						
CO-5:	Apply the energy level splitting in crystal field theory and construct molecular orbital diagrams for simple molecules.	К3						
CO-6:	Analyze the various quantum mechanical and group theoretical approaches for studying chemical systems.	K4						

COURSE CONTENT :

MODULE 1:Quantum Mechanics22 HoursFundamentals:General formulation of Quantum Mechanics, Postulates of Quantum
Mechanics, Review of rigid rotor, harmonic oscillator and Hydrogen atom problems. Angular
momentum: commutative relations and ladder operators.22 Hours

Approximation Methods: Stationary perturbation theory for non-degenerate and degenerate systems with examples. Variation method. Ground state of Helium atom. Time-dependent perturbation theory. Radiative transitions. Einstein coefficients.

Many Electron Atoms: Hartee SCF method, Electron correlation, Addition of angular momenta – Clabsch-Gordan series, Spin-orbit interaction, Condon Slater rule.

Molecular Structure: Born-Oppenheimer approximation. Molecular orbital treatment for homonuclear molecule. Hückel MO treatment of simple polyenes.

MODULE 2:	Applications of Group theory to IR and Raman Spectroscopy	10 Hours

Brief introduction to molecular vibrations; selection rules for fundamental vibrational transitions, symmetry of normal modes of molecules, Infrared and Raman activity of some typical molecules (molecules of C_{2v} , C_{3v} , C_{4v} , D_{2h} , D_{3h} , D_{4h} , T_d and O_h point groups).

MODULE 3:Applications of Group theory to Crystal Field Theory and
Molecular Orbital Theory12 Hours

Splitting of levels and terms in chemical environment, construction of energy level diagrams, selection rules and polarizations.

Introduction, transformation properties of atomic orbitals; hybridization schemes for σ - and π -bonding, hybrid orbitals as LCAOs; Molecular Orbital Theory for some typical AB_n types (n = 2, 3, 4, 6) of molecules (H₂O, NH₃ and BH₃).

TOTAL LECTURES	44 Hours

Books:

- 1. P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics, 3rdedition (1997), Oxford University Press. Oxford.
- 2. I. N. Levine, Quantum Chemistry, 5th edition (2000), Pearson Educ., Inc., New Delhi.
- 3. D. A. McQuarrie and J. D. Simon, Physical Chemistry: A Molecular Approach, (1998), Viva Books, New Delhi.
- 4. A. K. Chandra, Introductory Quantum Chemistry, 4thedn. (1994), Tata McGraw Hill, New Delhi.
- 5. L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics with Applications to Chemistry, (1935), McGraw Hill, New York.
- 6. F. A. Cotton, Chemical Applications of Group Theory, 3rdedn. (1999), John Wiley & Sons, New York.

]	PROGR	ΑΜ ΟΙ	JTC	OM	ES ((PO)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1			1	3	2	1
CO-2	3	3	2	2	1			1	3	2	1
CO-3	3	3	2	2	1			1	3	2	1
CO-4	3	3	2	2	1			1	3	2	1
CO-5	3	3	2	2	1			1	3	2	1
CO-6	3	3	2	2	1			1	3	2	1
Average	3	2.83	1.83	2	1			1	3	2	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title: Electrochemistry	Subject Code: TIU-PCH-T209
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

Enable the student to:

- 1. Understand ion-solvent interactions and their thermodynamic and structural properties.
- 2. Analyze electrical double layer models and electrode kinetics to interpret interfacial phenomena.
- 3. Apply electrochemical principles to real-world applications, including corrosion, cyclic voltammetry, and electrocatalysis.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental concepts of ion-solvent interactions and models describing solvation.	K1
CO-2:	Understand the structure and potential distribution of the electrical double layer at metal/semiconductor-electrolyte interfaces.	K2
CO-3:	Apply different models of the electrical double layer to analyze interfacial electrochemical phenomena.	K3
CO-4:	Analyze electrode kinetics, including multistep reactions, rate-determining steps, and electrocatalytic activity.	K4
CO-5:	Apply key electrochemical parameters such as exchange current density, reaction order, and transfer coefficients.	К3
CO-6:	Analyze the electrochemical applications, including corrosion, cyclic voltammetry, and electrochemical cell performance.	K4

COURSE CONTENT :

MODULE 1:	Ion-Solvent Interaction	5 Hours		
Introduction, B	forn model and Born equation, enthalpy of ion-solvent interaction	ction and its		
evaluation, Eley	<i>r</i> -Evan model, solvation number and its determination.			
MODULE 2:	Electrical Double Layer at Metal/Semiconductor-	20 Hours		
	Electrolyte Interface			
OHP and IHP,	potential profile across double layer region, potential differ	cence across		
electrified inter	rface, Structure of the double layer: Helmholtz-Perrin, Gouy-Cl	napman, and		
Stern models.	Butler-Volmer equation under near equilibrium and non	-equilibrium		
conditions, exe	change current density, Tafel plot. Thermodynamics of d	ouble layer,		
Electrocapillary equation, Determination of surface excess and other electrical parameters-				
electrocapillari	ty, excess charge capacitance, and relative surface excesses.	-		

MODULE 3:	Electrode Kinetics	15 Hours			
Polarizable and	l non-polarizable interfaces. Multistep reactions-a near equilibre	rium relation			
between current density and over potential, concept of rate determining step. D					
of reaction order, stochiometric number, and transfer coefficient. Elec					
comparison of electrocatalytic activity. Importance of oxygen reduction an					
evolution react	ons and their mechanisms.				
MODULE 4:	Applications of Electrochemistry	4 Hours			
Electrochemical cells, Corrosion, Cyclic Voltammetry					
TOTAL LECTU	RES	44 Hours			

Books:

- 1. J. O'M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Vol. 1 & 2A and 2B, (1998) Plenum Press, New York.
- 2. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edition, (2001) John Wiley &Sons, New York.
- 3. Samuel Glasstone, An Introduction to Electrochemistry: Edition 1st, East-West Press Pvt Ltd New Delhi, India.

	PROGRAM OUTCOMES (PO)								PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	1	2	3	
CO-1	3	2	1	2	1			1	3	2	1	
CO-2	3	3	2	2	1			1	3	2	1	
CO-3	3	3	2	2	1			1	3	2	1	
CO-4	3	3	2	2	1			1	3	2	1	
CO-5	3	3	2	2	1			1	3	2	1	
CO-6	3	3	2	2	1			1	3	2	1	
Average	3	2.83	1.83	2	1			1	3	2	1	

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title:Industrial Chemistry	Subject Code: TIU-PCH-T231
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

Enable the student to:

- 1. Understand major industrial chemistry sectors and processes.
- 2. Analyze petroleum refining and renewable fuel technologies.
- 3. Apply quality, environmental, and safety standards in industries.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental concepts of industrial chemistry, including key sectors and manufacturing processes.	K1
CO-2:	Understand thepetroleum refining techniques, alternative fuels, and their applications.	K2
CO-3:	Apply the quality control techniques and regulatory frameworks in chemical industries.	K3
CO-4:	Apply statistical quality control methods and ISO standards for industrial process evaluation.	K3
CO-5:	Analyze the environmental and safety regulations in chemical and fuel industries.	K4
CO-6:	Understand the waste management and sustainability practices in industrial processes.	K2

COURSE CONTENT :

MODULE 1: Industrial Chemistry Overview		24 Hours		
Introduction to Different Industries, Petroleum and Petrochemicals: C	omposit	ion of Crude Oils		
(Paraffins, Naphthenes, Aromatics, Sulphur and Nitrogen Compoun	ds), Dist	illation Methods		
(Atmospheric, Vacuum), Cracking Techniques (Thermal, Catalytic, Hy	vdrocrac	king), Reforming		
and Hydrotreatment, Properties of Petroleum Products, and Alternativ	e Fuels. l	Paper and Textile		
Industries: Raw Materials for Paper, Pulp Manufacturing, Evaluation of	of Paper	Properties, Fiber		
Characteristics (Cotton, Wool, Silk), Synthetic Fibers, and Recycling	Processe	s. Cosmetics and		
Healthcare: Raw Materials in Cosmetics, Quality Control of Product	s (Sham	poo, Toothpaste,		
Skin Creams, Perfumes), and Stability Factors in Formulations. Pharmaceutical Industry:				
Overview of Drug Development Processes, Quality Control in Pharmaceuticals, Regulatory				
Standards, and Good Manufacturing Practices (GMP).				
MODULE 2: Advanced Petroleum Processing and Renewable Fi	uels	8 Hours		

Refining Processes: Caustic Washing, Merox Process, Hydrorefining, Methods for Improving

Storage Stability, Filtration, Molecular Sieves, Overview of Synthetic and Renewable Fuels, Modern Fuels: Electrofuel, Solar Fuel, Syngas, and Their Applications.

MODULE 3:Quality Control in Chemical Industries6 HoursQuality Control in the Chemical Industry: Statistical Quality Control Techniques, Control Charts,
Performance Evaluation, Validation of Analytical Methods, Quality Assurance Elements, Quality
Management Systems (ISO 9001:2000), Case Studies on ISO 9001:2000 in Chemical Industries,
ISO 14000 Series of Standards, Good Laboratory Practices (GLP), Good Manufacturing Practices
(GMP) in Drugs and Pharmaceuticals, Accreditation of QC Laboratories, Tools and Mechanisms,
ICH Guidelines.

MODULE 4:	Environmental and Safety Standards	6 Hours
Environmental	Considerations in Chemical Manufacturing, Health and Safe	ty Standards in
Chemical and	Fuel Industries, Food Quality and Safety Standards in FM	ICG, Regulatory
Frameworks for	[•] Chemical Industries, Best Practices for Waste Management a	nd Sustainability
in Industrial Pro	cesses.	
TOTAL LECTUR	RES	44 Hours

Books:

- 1. I.B.H. Rao, Modern Petroleum Refining Process, 2nd ed. (2020) IBH Publications.
- 2. A. Maiti, Introduction to Petrochemicals (2019) IBH Publications.
- 3. G.A. Smook, Handbook for Pulp and Paper Technologists, 2nd ed. (2021) Angus Wilde Publications.
- 4. V.A. Shenai, Technology of Textile Processing: Technology of Dyeing, 4th ed. (1988) Sewak Publications, Bombay.
- 5. L. Shargel & A.B.C. Yu, Applied Biopharmaceutics and Pharmacokinetics, 4th ed. (1999).
- 6. A.H. Beckett & J.B. Stenlake, Practical Pharmaceutical Chemistry, Part I and Part II, 4th ed. (2000) The Royal Society of Chemistry.
- 7. G.H. Jeffery, J. Basset, J. Mendham, & R.C. Denny, Vogel's Textbook of Quantitative Chemical Analysis, 5th ed. (1989) ELBS.
- 8. M. Mahajan, Statistical Quality Control, 2nd ed. (1995) Dhanpat Rai and Sons.
- 9. M.A. Fryman, Quality Management: A Process Improvement Approach (2002) Cengage Learning.
- 10. D. Paranthaman, Quality Control (1987) Tata McGraw Hill.

	PROGRAM OUTCOMES (PO)								PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1	1	1	1	2	1	2
CO-2	3	3	2	2	1	1	1	1	2	1	2
CO-3	3	3	2	2	1	1	1	1	2	1	2
CO-4	3	3	2	2	1	1	1	1	2	1	2
CO-5	3	3	2	2	1	1	1	1	2	1	2
CO-6	3	3	2	2	1	1	1	1	2	1	2
Average	3	2.83	1.83	2	1	1	1	1	2	1	2

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title: Environmental Chemistry	Subject Code: TIU-PCH-T233
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

Enable the student to:

- 1. Understand environmental segments and cycles and their role in maintaining ecological balance.
- 2. Analyze sources, effects, and monitoring methods of air, water, and soil pollution.
- 3. Apply environmental sampling and analytical techniques for pollution assessment and control.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the different environmental segments, natural cycles, and their significance in ecological balance.	K1
CO-2:	Understand the sources, effects, and chemical processes involved in air, water, and soil pollution.	K2
CO-3:	Remember the environmental quality standards and monitoring techniques for pollutants.	K1
CO-4:	Apply wastewater treatment and solid waste management techniques for pollution control.	К3
CO-5:	Analyze the toxicity of inorganic and organic pollutants, including heavy metals and pesticides.	K4
CO-6:	Apply environmental sampling and analytical methods for pollutant detection and emission control.	K3

COURSE CONTENT :

MODULE 1:	Environmental segments	4 Hours			
Atmosphere, hyd	rosphere, lithosphere, and biosphere. Environmental cycles: w	ater, oxygen,			
nitrogen, carbon,	phosphorus, and sulfur cycles, composition and structure of the	atmosphere,			
chemical and ph	chemical and photochemical reactions in the atmosphere, ozone layer and its importance,				
greenhouse effect, acid rain, photochemical smog.					
MODULE 2:	Environmental Chemistry and Analysis	18 Hours			
Air pollution: Ai	Air pollution : Air quality standards and norms (OSHA, NIOSH, CPCB and WBPCB), Monitoring				
and Determination	and Determination of air pollutants: SO _x , NO _x , NH ₃ , hydrocarbons, VOC's, CO, SPM, RPM, PM _{2.5} ,				
Indoor air pollutants, photochemical smog and acid rain, and Green house gas effect (concise)					
Water pollution: Water-quality parameters and standards (CPCB and MoEF): physical and					
chemical parame	ters, Dissolved oxygen (DO), BOD, COD, Total organic carbon, To	otal nitrogen,			

Total sulfur, Total phosphorus, Chlorine, Heavy metals (Pb, As, Hg) and Pesticides

Waste water treatment and solid waste: Various types of waste water treatment: physical, chemical, aerobic and anaerobic (UASB) treatments, waste recycling, solid waste treatment and recycling

Soil pollution: Identification of soil pollutants, Detrimental effects of soil pollutants, solid waste management, Soil conservation – Nitrogen pathways and NPK in soil.

MODULE 3:	Environmentally toxic substances	14 Hours					
Toxic inorganic s	Toxic inorganic substances – realizing toxicity from the SHAB standpoint. Health hazards of						
SPM [Suspended	SPM [Suspended (inorganic) Particulate Matter]; IPM [Inhaleable (inorganic) Particulate						
Matter]; Method	s of determination of SPM (High Volume Sampler) and II	PM (Cascade					
Impactor); Mecha	anisms of some heavy metal toxicities and their impact on societ	y; Pesticides;					
metallo-organic o	compounds and their toxicity; Application of analytical methods	to determine					
toxic species. Po	lymers and Plastics and their environmental degradation, Int	roduction to					
green chemistry	and its utility.						

MODULE 4:	Environm		8 Hours					
Environmental	sampling,	analysis,	emission,	and	control:	Sampling	techniques	
(Air/water/soil) Environmental sample analysis by UV-Vis Spectrophotometer, GC, and HPLC,								
Emission: Fugitive emission, BTX analysis, Emission control equipments.								
TOTAL LECTUR	44 Hours							

TOTAL LECTURES

Books:

- 1. G. W. Vanloon, S.J. Duffer, Environmental Chemistry A Global Perspective, Oxford University Press (2000).
- 2. F. W. Fifield and W. P. J. Hairens, Environmental Analytical Chemistry, 2nd Edition (2000), Black Well Science Ltd.
- 3. Colin Baird, Environmental Chemistry, W. H. Freeman and Company, New York (1995).
- 4. A. K. De, Environmental Chemistry, 4th Edition (2000), New Age International Private Ltd., New Delhi.
- 5. Peter O. Warner, Analysis of Air Pollutants, 1st Edition (1996), John Wiley, New York.
- 6. S. M. Khopkar, Environmental Pollution Analysis, 1st Edition (1993), Wiley Eastern Ltd., New Delhi.
- 7. S. K. Banerji, Environmental Chemistry, 1st Edition (1993), Prentice-Hall of India, New Delhi.
- 8. C. Baird, Environmental Chemistry, 5th Edition (2017), W. H. Freeman, New York.
- 9. M. M. Benjamin, Water Chemistry, 2nd Edition (2015), Waveland Press, Long Grove, IL, ISBN 1-4786-2308-X.
- 10. S. S. Dara, Environmental Chemistry, 1st Edition (2006), S. Chand Publishing, New Delhi.
- 11. Mahajan, Environmental Chemistry, 1st Edition (2010), Prentice Hall, New Delhi.

	I	PROGR	ΑΜ ΟΙ	JTC	OM	ES ((PO)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1		2	1	2	1	1
CO-2	3	3	2	2	1		2	1	2	1	1
CO-3	3	3	2	2	1		2	1	2	1	1
CO-4	3	3	2	2	1		2	1	2	1	1
CO-5	3	3	2	2	1		2	1	2	1	1
CO-6	3	3	2	2	1		2	1	2	1	1
Average	3	2.83	1.83	2	1		2	1	2	1	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.		
Course Title: Green Chemistry	Subject Code: TIU-PCH-T235		
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4		

Enable the student to:

- 1. Understand the principles of green chemistry and their role in sustainable chemical processes.
- 2. Analyze green chemical strategies for improving reaction efficiency, reducing waste, and promoting cleaner production.
- 3. Apply green chemistry techniques such as catalysis, photochemical degradation, and sustainable reaction media in chemical synthesis and waste treatment.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental principles and goals of green chemistry.							
CO-2:	Understand the concept of atom economy, reaction efficiency, and sustainable chemical processes.	K2						
CO-3:	Understand the green solvents, catalysts, and reaction conditions for environmentally friendly chemical synthesis.							
CO-4:	Apply the green chemistry strategies such as microwave-assisted synthesis, bio-catalysis, and solvent-free reactions.							
CO-5:	Analyze the role of multicomponent reactions and nanocatalysts in sustainable organic synthesis.							
CO-6:	Apply the photochemical degradation methods for eco-friendly waste treatment and pollution control.	К3						

COURSE CONTENT :

1							
MODULE 1:	General understanding of green chemistry	10 Hours					
Introduction to Green Chemistry, Need for Green Chemistry. Goals of Green Chemistry. An							
introduction 1	to the tools of green chemistry and its fundamental principles.	Principles of					
Green Chemis	stry: Prevention of waste / by-products, Hazardous products,	Designing of					
safer chemica	ls- Selection of appropriate solvents and starting materials- Use	of protecting					
groups and ca	talysis- Designing of biodegradable products.						
MODULE 2:	Green Chemical Strategies for Sustainable Development	26 Hours					
Reaction mass balance-Atom Economy, Evaluation for Chemical Reaction Efficiency,							
Cleaner Production and Sustainable Development, Implementation of Cleaner Production,							
Change of Rav	Change of Raw Materials. On Site Reuse and Recycling.						

Green Solvents/ reaction Media, Catalysis and Bio catalysis. Microwave oven as a reactor,
Theory of Microwave Heating. Design, synthesis and applications of green catalysts in
organic synthesis, nanocatalysts, surface modified catalysts, porous catalysts.
Multicomponent reactions (MCRs) for heterocycles synthesis under green conditions:
mechanochemistry (Ball-Milling), reactions in micellar media, reactions in aqueous
medium, reactions under solvent-free conditions.8 HoursMODULE 3:Photochemical approaches8 HoursPhotochemical Degradation: An Eco-friendly Approach of Waste Treatment. Photochemical
Principles, Heterogeneous Photo-catalysis, Homogeneous Photo-degradation, photo
oxidation, Direct Photo-degradation, Gas phase Detoxification, Equipments and
applications.44 Hours

Books:

- 1. V. K. Ahluwalia & M. Kidwai, New Trends in Green Chemistry, 1st Edition (2009), Ane Books, New Delhi.
- 2. V. K. Ahluwalia, Green Chemistry, 1st Edition (2006), University Press, Hyderabad.
- 3. P. T. Anastas & T. C. Williamson, Green Chemistry, 2nd Edition (1997), Oxford University Press, New York.
- 4. C. Kappe & C. Oliver, Microwaves in Organic and Medicinal Chemistry, 1st Edition (2009), Wiley-VCH, Weinheim.
- 5. R. R. Gupta, V. E. Eric & C. Oliver Kappe, Microwave Assisted Synthesis of Heterocycles, 1st Edition (2010), Wiley-VCH, Weinheim.
- 6. K. Tanka, Solvent-free Organic Synthesis, 1st Edition (2006), Wiley-VCH, Weinheim.

	P	ROGR	AM OU	JTC	OM	IES	(PO)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1		2	1	2	1	1
CO-2	3	3	2	2	1		2	1	2	1	1
CO-3	3	3	2	2	1		2	1	2	1	1
CO-4	3	3	2	2	1		2	1	2	1	1
CO-5	3	3	2	2	1		2	1	2	1	1
CO-6	3	3	2	2	1		2	1	2	1	1
Average	3	2.83	1.83	2	1		2	1	2	1	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title: Advance Inorganic Chemistry Lab	Subject Code: TIU-PCH-L211
Contact Hours/Week: 0-0-8 (L-T-P)	Credit: 4

The course aims to provide practical skills on (i) qualitative and quantitative estimation of varieties of ions and selected compounds in solution; (ii) syntheses, purification and characterizations of inorganic metal complexes, polymers, and macrocycles.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember themajor and minor components in ores and alloys using volumetric, complexometric, and instrumental methods.	K1
CO-2:	Remember the separation techniques such as solvent extraction and chromatography for quantitative analysis.	K1
CO-3:	Understand the determination of composition and formation constants using pH-metric and spectrophotometric methods.	K2
CO-4:	Apply various synthesis techniques to prepare inorganic and coordination compounds with different ligand systems.	К3
CO-5:	Analyze the structural and chemical properties of synthesized compounds using characterization techniques.	K4
CO-6:	Understand the synthesis and properties of inorganic polymers for potential applications.	K2

COURSE CONTENT :

Experiment1: Quantitative analysis of major and minor components in ores and alloys by volumetric, complexometric, gravimetric and other instrumental methods after separation of the components by solvent extraction or chromatographic techniques.

Experiment 2: Determination of composition and formation constants of selected systems by *p*H-metric and spectrophotometric methods.

Experiment3: Preparation of inorganic and coordination compounds (bi-, tri- and polydentate ligands) and their characterization by various techniques.

Experiment 4: Synthesis of inorganic polymer

TOTAL LECTURES

112 Hours

Books:

- 1. James, A.M., Prichard, F.F. Practical Physical Chemistry, 3rd ed., 2021, Prentice Hall.
- 2. Levitt, B.P. Findlay's Practical Physical Chemistry, 10th ed., 2020, Prentice Hall.
- 3. Shoemaker, D.P., Haile, J., Moeller, W.J. Experimental Physical Chemistry, 3rd ed., 2014, Prentice Hall.

	PR	OGI	RAM	I OU	TCC)ME	S (P	0)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	2	1	1	2	1	1	1	1	2	3	2
CO-2	2	1	1	2	1	1	1	1	2	3	2
CO-3	2	1	1	2	1	1	1	1	2	3	2
CO-4	2	1	1	2	1	1	1	1	2	3	2
CO-5	2	1	1	2	1	1	1	1	2	3	2
CO-6	2	1	1	2	1	1	1	1	2	3	2
Average	2	1	1	2	1	1	1	1	2	3	2

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.		
Course Title: Advance Organic Chemistry Lab	Subject Code: TIU-PCH-L213		
Contact Hours/Week: 0-0-8 (L-T-P)	Credit: 4		

In this course students get the training on synthesis, extraction, purification and characterization of some important organic compounds.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the key intermediates and final products in multistep organic synthesis.	K1
CO-2:	Understand the principles of IR, NMR, and mass spectrometry for organic compound characterization.	K2
CO-3:	Remember the purification techniques such as recrystallization, TLC, and partition chromatography for organic synthesis.	K2
CO-4:	Applymultistep synthesis strategies to prepare selective organic compounds.	КЗ
CO-5:	Analyze reaction progress and product purity using spectroscopic and chromatographic techniques.	K4
CO-6:	Analyze the structural properties of synthesized organic compounds using spectral data interpretation.	K4

COURSE CONTENT :

Experiment 1: Preparation of organic compounds involving several stages, characterization of intermediates and final products by IR and NMR spectroscopy.

Experiment 2: Characterization of organic compounds or groups by spectroscopic methods

Experiment 3: Syntheses (multistep) of selective organic compounds utilizing standard processes, followed by product purification (recrystallization, TLC, PC, R_f values, m.p/b.p.] and characterization by various spectroscopic techniques (NMR, IR, mass).

TOTAL LECTURES

112 Hours

Books:

- 1. H. Middleton, Systematic Organic Qualitative Analysis, 3rd Edition (2020) Edward Arnold, London.
- 2. H.T. Clarke, Handbook of Organic Analysis, 4th Edition (2013) John Wiley & Sons, New York.
- 3. A.I. Vogel, Vogel's Textbook of Quantitative Chemical Analysis, 6th Edition (2023) Pearson Education Limited, Harlow.

CO.	•PO	MAPP	ING
			DDOCD

	PR	OGI	RAM	I OU	TCO	OME	S (P	0)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	2	1	1	2	1	1	1	1	2	3	2
CO-2	2	1	1	2	1	1	1	1	2	3	2
CO-3	2	1	1	2	1	1	1	1	2	3	2
CO-4	2	1	1	2	1	1	1	1	2	3	2
CO-5	2	1	1	2	1	1	1	1	2	3	2
CO-6	2	1	1	2	1	1	1	1	2	3	2
Average	2	1	1	2	1	1	1	1	2	3	2

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title: Advance Physical Chemistry Lab	Subject Code: TIU-PCH-L215
Contact Hours/Week: 0-0-8 (L-T-P)	Credit: 4

In this course students learn about hand-on experiences of techniques for verifying physical and chemical properties and data interpretation.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the principles of spectrophotometric techniques for studying complexation, composition determination, and indicator constants.	K2				
CO-2:	Remember key physical chemistry concepts such as Lambert-Beer's law, solubility product, and reaction kinetics.	K1				
CO-3:	Understand the synthesis and characterization of nanomaterials using experimental techniques.	K2				
CO-4:	Apply kinetic models to study autocatalytic and iodine clock reactions, as well as the effect of ionic strength on reaction rates.					
CO-5:	Analyze ternary phase diagrams, molecular weight determination by viscosity, and fluorescence quantum yield calculations.	K4				
CO-6:	Apply the role of experimental parameters in influencing reaction mechanisms, solubility, and molecular interactions.	КЗ				

COURSE CONTENT :

Experiment 1: Spectrophotometric study on hydrogen bonded complexation

Experiment 2: Verification of Lambert-Beer's law: Determination of concentration of unknown solution

Experiment 3: Spectrophotometric experiment - determination of composition of a complex (Job's method)

Experiment 4: Spectrophotometric experiment - Determination isosbestic point and indicatorConstant

Experiment 5: Synthesis and characterization of different nano materials

Experiment 6: Autocatalytic Reaction of Potassium Permanganate and Oxalic Acid

Experiment 7: Solubility Product (Ksp) Determination of Calcium Sulfate

Experiment 8: Ternary Phase Diagram Construction and Analysis

Experiment 9: Kinetics of the Iodine Clock Reaction

Experiment 10: Investigating the Effect of Ionic Strength on the Rate of Hydrolysis of Ethyl

Acetate in Sodium Chloride Solutions

Experiment 11: Fluorescence Quantum Yield Calculation of a Fluorophore and Quenching Mechanisms in Solution

 Experiment 12: Calculation of molecular weight of a polymer by viscosity experiment

 TOTAL LECTURES

 112 Hours

Books:

- 1. H. Middleton, Systematic Organic Qualitative Analysis, 3rd Edition (2020) Edward Arnold, London.
- 2. H.T. Clarke, Handbook of Organic Analysis, 4th Edition (2013) John Wiley & Sons, New York.
- 3. A.I. Vogel, Vogel's Textbook of Quantitative Chemical Analysis, 6th Edition (2023) Pearson Education Limited, Harlow.

	PR	OGI	RAM	I OU	ТСС	OME	S (F	'0)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	2	1	1	2	1	1	1	1	2	3	2
CO-2	2	1	1	2	1	1	1	1	2	3	2
CO-3	2	1	1	2	1	1	1	1	2	3	2
CO-4	2	1	1	2	1	1	1	1	2	3	2
CO-5	2	1	1	2	1	1	1	1	2	3	2
CO-6	2	1	1	2	1	1	1	1	2	3	2
Average	2	1	1	2	1	1	1	1	2	3	2

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title:Project-I	Subject Code: TIU-PCH-P291
Contact Hours/Week: 0-0-8 (L-T-P)	Credit: 4

Enable the student to:

- 1. Develop research skills through literature surveys, experimental techniques, and theoretical methodologies.
- 2. Enhance proficiency in instrumentation and analytical methods for scientific research.
- 3. Prepare students for careers in industry, academia, and PhD programs by strengthening research and problem-solving abilities.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Apply research methodologies and experimental techniques to conduct independent investigations in chemistry.	K3
CO-2:	Analyze experimental and theoretical data to interpret results and draw meaningful conclusions.	K4
CO-3:	Evaluate scientific literature to identify research gaps and formulate research hypotheses.	К5
CO-4:	Create an optimum experimental or theoretical approaches to optimize research methodologies and instrumentation.	K6
CO-5:	Analyze various research findings and integrate constructive feedback to enhance scientific communication.	K4
CO-6:	Create a comprehensive research dissertation and present findings with clarity and scientific rigor.	K6

COURSE CONTENT :

Project Dissertation

Each student will undertake an independent research project in a specialized area of chemistry, aligned with their interests and career aspirations. The project will be conducted over the entire semester under the supervision of a faculty mentor, allowing students to gain hands-on experience in research methodologies, experimental techniques, and data analysis. **Project Components:**

1. Literature Survey:

Conduct a thorough review of relevant scientific literature to understand the background, existing research gaps, and the significance of the chosen topic. > Formulate research objectives based on the identified gaps.

2. Research Methodology:

- Develop a research plan, selecting appropriate experimental or computational techniques.
- > Understand and utilize laboratory instrumentation, chemical synthesis, analytical techniques, or theoretical models, depending on the nature of the project.

3. Data Collection & Analysis:

- > Perform experiments or simulations systematically to generate reliable data.
- > Use statistical and analytical tools to interpret results and identify trends.

4. Results & Discussion:

- > Compare experimental or theoretical findings with literature reports.
- > Discuss implications, limitations, and possible improvements.

5. Scientific Writing & Reporting:

- Prepare a structured dissertation including an introduction, methodology, results, discussion, and conclusion.
- > Emphasize clarity, coherence, and proper referencing.

6. **Presentation & Evaluation:**

- Present findings in a formal setting, demonstrating effective communication and critical thinking.
- > Incorporate feedback from faculty and peers to refine the dissertation.

TOTAL LECTURES

112 Hours

	PR	OGI	RAM	I OU	TCO)ME	S (P	0)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	3	3	3	2	1	1	3	3	3	3
CO-2	3	3	3	3	2	1	1	3	3	3	3
CO-3	3	3	3	3	2	1	1	3	3	3	3
CO-4	3	3	3	3	2	1	1	3	3	3	3
CO-5	3	3	3	3	2	1	1	3	3	3	3
CO-6	3	3	3	3	2	1	1	3	3	3	3
Average	3	3	3	3	2	1	1	3	3	3	3

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 4 th Sem.
Course Title: Spectroscopy-II and Supramolecules	Subject Code:TIU-PCH-T224
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4

Enable the student to:

- 1. Understand Spectroscopic Techniques Learn the principles and applications of NMR, EPR, Mössbauer, and NQR spectroscopy.
- 2. Analyze Molecular Structures Interpret spectral data from various techniques, including mass spectrometry, for structural elucidation.
- 3. Explore Supramolecular Chemistry Understand molecular interactions, recognition, and self-assembly in supramolecular systems.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the fundamental principles of NMR, EPR, Mössbauer, and NQR spectroscopy.	K1
CO-2:	Understand the concepts of chemical shifts, spin interactions, and coupling constants in various spectroscopic techniques.	K2
CO-3:	Apply the spectroscopic methods to interpret molecular structures and bonding characteristics.	КЗ
CO-4:	Analyze themass spectrometry fragmentation patterns to determine molecular composition.	K4
CO-5:	Analyze the different spectroscopic techniques for structural elucidation of organic and inorganic compounds.	K4
CO-6:	Understand the key supramolecular interactions and their role in molecular recognition and self-assembly.	K2

COURSE CONTENT :

MODULE 1:	NMR Spectroscopy	16 Hours						
PMR Spectros	echanism and							
anisotropic effe	ects, chemical exchange and chemical shifts in chiral molecu	ıles. Spin-spin,						
spin-lattice rela	exations, Spin-spin interactions, naming spin systems, magnitu	de of coupling						
constant: Germ	constant: Germinal, vicinal and long range couplings. Simplification of complicated spectra:							
Aromatic indu	ced shifts spin decoupling, deuterium exchange, spectra at	higher fields.						
Hindered rotati	on and rate processes. Nuclear Overhauser effect.							
	1							

CMR Spectroscopy: General considerations, chemical shift, calculation of approximate chemical shift values, coupling constants. Interpretation of simple CMR spectra. DEPT spectrum.

Advanced NMR Techniques in Structure Elucidation of Organic Compounds: Application
of DEPT, ¹ H- ¹ H COSY, HMBC, HMQC, TOCSY, NOESY.								
NMR Spectroscopy of Inorganic Molecules: NMR spectra of paramagnetic coordination								
compounds, dipolar and contact shifts, ¹¹ B, ¹⁹ F, ²⁷ Al, ³¹ P – NMR spectroscopy with typical								
examples.								
Nuclear Quadruple Resonance (NQR) Spectroscopy: Qudrupole nuclei, qudrupole								
moments, electric field gradient, coupling constant, splitting and simple applications.								
MODULE 2: Mass spectroscopy and structure elucidation 8 Hours								
Mass Spectrometry: Introduction, ion production, fragmentation, single and multiple bond								
cleavage, rearrangements, cleavage associated with common functional groups, molecular ion								
peak, metastable ion peak, Nitrogen rule and interpretation of mass spectra.								
Structure elucidation based on spectroscopic data (IR, UV, NMR and Mass).								
MODULE 3: Inorganic spectroscopic techniques 10 Hours								
EPR: Hyperfine splitting in various systems, factors affecting the magnitude of g-value.								
Anisotropy in the hyperfine coupling constants, zero-field splitting and Kramers' degeneracy.								
nuclear quadrupole interactions, Application.								
Mössbauer: Gamma ray emission and absorption by nuclei, Mössbauer effect, Isomer shift								
quadrupole splitting, Application to the elucidation of structure and bonding of Fe(III) and								
Fe(II), Sn(IV) and Sn(II) compounds, detection of oxidation states and in equivalent MB atoms.								
Optical Rotatory Dispersion and Circular Dichroism: Basic Principles of ORD and CD								
techniques. ORD and Cotton effect, Faraday and Kerr effects: Applications in determining								
absolute configuration of metal complexes.								
MODULE 4: Supramolecular Chemistry 10 Hours								
Concepts and terminology of supramolecular chemistry. Nature and types of supramolecular								
interactions (Hydrogen bonding, van der Waal interactions, π -stacking, C-H π interactions								
etc.), Molecular recognition- Information and complementarity. Different types of receptors								
with special reference of Crown ethers, Cryptates and Calix[4]arene. Anion recognition and								
anion coordination chemistry. Molecular self-assembly formation and examples.								
Supramolecular chemistry of life, application of supramolecular chemistry.								
TOTAL LECTURES 44 Hours								

Books:

- 1. R. M. Silverstein and F.X. Webster, Spectroscopic Identification of Organic Compounds, 6th Edition (2003) John Wiley, New York.
- 2. D. H. Williams and I.F. Fleming, Spectroscopic Methods in Organic Chemistry, 4th Edition (1988), Tata-McGraw Hill, New Delhi.
- 3. P. Y Bruice, Organic Chemistry, 2nd Edition (1998) Prentice-Hall, New Delhi.
- 4. E. A. V. Ebsworth, D. W. H. Rankin and S. Cradock, Structural Methods in Inorganic Chemistry, 1st Edition (1987), Blackwell Scientific Publications, Oxford, London.
- 5. R. S. Drago, Physical Methods in Chemistry, International Edition (1992), Affiliated East-West Press, New Delhi.
- 6. Jean-Marie Lehn, Supramolecular Chemistry, VCH, Weinheim (1995).
- 7. J. L. Atwood, J. W. Steed, and J. L. H. Smith, Supramolecular Chemistry, 2nd Edition (2006) Wiley, Chichester.

]	PROGR	ΑΜ ΟΙ	JTC	OM	ES ((PO))	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	1	2	1			1	3	2	1
CO-2	3	3	2	2	1			1	3	2	1
CO-3	3	3	2	2	1			1	3	2	1
CO-4	3	3	2	2	1			1	3	2	1
CO-5	3	3	2	2	1			1	3	2	1
CO-6	3	3	2	2	1			1	3	2	1
Average	3	2.83	1.83	2	1			1	3	2	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 4 th Sem.
Course Title:Inorganic Rings, Chains, and Clusters	Subject Code: TIU-PCH-T210
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

Enable the student to:

- 1. Understand Cluster Chemistry Learn the structure, bonding, and nomenclature of boranes and metal clusters.
- 2. Apply Bonding Theories Use Wade's rules and the isolobal principle to analyze cluster stability.
- 3. Explore Inorganic Polymers Study the types, synthesis, and applications of inorganic polymers.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the structure, bonding, and nomenclature of boranes, heteroboranes, and metal clusters.	K1						
CO-2:	Understand Wade's rules, Lipscomb's styx rules, and the isolobal principle in cluster chemistry.	K2						
CO-3:	Apply bonding theories to predict the stability and structure of borane and metal clusters.	К3						
CO-4:	Analyze the role of metal clusters in various chemical systems using Wade's-Mingo's and Lauhr's rules.							
CO-5:	Analyze the inorganic polymers with organic polymers based on their synthesis and properties.							
CO-6:	Understand the applications of metallaboranes, heteropoly anions, and inorganic polymers in real-world scenarios.	K2						

COURSE CONTENT :

MODULE 1:Inorganic clusters24 HoursClusters andelement-element bonds:Polyhedral boranes:Electron deficiency vssufficiency.Types and IUPAC nomenclature.Wade's polyhedral skeleton electron pairtheory(PSEPT).W. N. Lipscomb's styx rules and semi-topological structures of boranes.Equivalentand resonance structures.Wade's vs Lipscomb's methods of studying higherboranes.

Heteroboranes: Types of heteroboranes with special reference to carboranes, structure, bonding and IUPAC nomenclature. Metallaboranes, Metallacarboranes, metal σ and μ bonded borane/carborane clusters. Resemblance of Metallaboranes/Metallacarboranes with ferrocene and related compounds. Applications of Metallaboranes/Metallacarboranes as drug delivery system. Applications of PSEPT over heteroboranes.

Principle of Isolobility: Development and formulation of the concept of isolobility and its applications in the understanding of structure and bonding of heteroboranes.

	0								
MODULE 2:	Metal Clusters 10 Hours								
Low and high nuclearity carbonyl clusters, applications of PSEPT, Wade's-Mingo's and Lauhr's									
rule over metal c	rule over metal carbonyl clusters. Capping rules. Metal halide and metal chalcogenide clusters,								
Zintl phase, Isop	Zintl phase, Isopoly and heteropoly anions: syntheses, structures and applications, Chevrel								
phases, Blooming	phases, Bloomington schuffle in dinuclear tungsten clusters.								
MODULE 3:	3: Inorganic Polymers 10 Hours								
Classification, Types of Inorganic Polymerization, Comparison with organic polymers, Boron-									
oxygen and boron-nitrogen polymers, silicones, coordination polymers, sulphur-nitrogen,									
sulphur-nitrogen	-fluorine compounds, - binary and multicomponent systems	, haemolytic							

inorganic systems. 44 Hours

Books:

- 1. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 6thEdn. (1999), John-Wiley & Sons, New York.
- 2. James E. Huheey, Inorganic Chemistry, 4thEdn. (1993), Addison Wesley Pub. Co., New York
- 3. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2ndEdn. (1997), Butterworth Heinemann, London.

	PF	ROGRA	MO)UT	'CO	MES	5 (P	0)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	2	2	1			1	2	1	1
CO-2	3	3	2	2	1			1	2	1	1
CO-3	3	3	2	2	1			1	2	1	1
CO-4	3	3	2	2	1			1	2	1	1
CO-5	3	3	2	2	1			1	2	1	1
CO-6	3	3	2	2	1			1	2	1	1
Average	3	2.83	2	2	1			1	2	1	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 4 th Sem.			
Course Title: Advanced Organic Chemistry-III	Subject Code: TIU-PCH-T214			
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4			

Enable the student to:

- 1. Understand Oxidation Reactions Learn the mechanisms and applications of various oxidation reagents in organic synthesis.
- 2. Explore Key Reagents and Reactions Study the role of specialized reagents in organic transformations and their synthetic applications.
- 3. Apply Concepts in Organic Synthesis Utilize retrosynthetic analysis, asymmetric synthesis, and stereoselective methods for designing complex organic molecules.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the various oxidation reagents and their role in organic transformations.	K1
CO-2:	Understand the mechanisms and applications of key organic reagents in synthesis.	K2
CO-3:	Apply the retrosynthetic analysis to design synthetic routes for complex organic molecules.	K3
CO-4:	Analyze the asymmetric synthesis methods, including chiral auxiliaries and enantioselective reactions.	K4
CO-5:	Analyze the different stereoselective transformations and their effectiveness in organic synthesis.	K4
CO-6:	Understand the significance of notable total syntheses, such as Taxol and tetracycline antibiotics.	K2

COURSE CONTENT :

MODULE 1:	Oxidation	6 Hours						
(i) Oxidation wit	(i) Oxidation with peracids: Oxidation of carbon-carbon double bonds carbonyl compounds,							
allylic carbon-hy	drogen bonds, (ii) Oxidation with selenium dioxide and Osmiui	n tetraoxide,						
(iii) Oxidation wi	th lead tetraacetate, mercuric acetate (iv) hypervalent iodine							
MODULE 2: Reagents and Reactions 8 Hours								
(i) Gilman's reag	(i) Gilman's reagent – Lithium dimethylcuprate, (ii) Lithium diisopropylamide (LDA), (iii)							
Dicyclohexyl carbodiimide (DDC), (iv) 1,3-Dithiane (Umpolung reagent), (v) Peterson's								
synthesis, (vi) Bakers yeast, (vii) DDQ, (viii) Palladium catalysed reactions, (ix) Woodward								
and Prevost hydroxylation, (x) Iodotrimethyl silane and (xi) Ionic liquids								
MODULE 3:	Concepts in organic synthesis	10 Hours						

Retrosynthesis, disconnection, synthons, linear and convergent synthesis, umpolung of reactivity and protecting groups; Notable total syntheses of natural compounds such as Taxol and tetracycline antibiotics.

MODULE 4:	Asymmetric synthesis	20 Hours
Chiral auxiliaries	, methods of asymmetric induction –substrate, reagent a	ind catalyst
controlled react	ions; Stereoselective transformations of carbonyl compoun	nds: enolate
generation, alky	lation processes, and chiral aldol reactions; Stereoselectiv	ve processes
involving alken	es: Diels-Alder reaction, sigmatropic rearrangements, st	ereoselective
hydrogenation,	epoxidation, hydroxylation, aminohydroxylation, and cyclo	propanation;
Kinetic resolutio	n techniques; enantioselective synthesis of menthol (Takasago)	and crixivan
(Merck).		
TOTAL LECTUR	ES	44 Hours

Books:

- 1. H. O. House, Modern Synthetic Reactions, 2nd Edition (1972), Benjamin/Cummings Publishing Company, California.
- 2. L. F. Fieser and M. Fieser, Reagents for Organic Synthesis, Vol. 1-16 (Vol. 1, 1967), Wiley-Interscience, New York.
- 3. M. B. Smith and J. March, March's Advanced Organic Chemistry Reactions, Mechanisms & Structure, 5th ed. (2001), Wiley-Interscience, New York.
- 4. M. B. Smith, Organic Synthesis, McGraw Hill Inc., New York (1995).
- 5. J. Clayden, N. Greeves, S. Warren, and E. Wothers, Organic Chemistry, Oxford Univ. Press, Oxford (2001).
- 6. P. R. Jenkins, Organometallic Reagents in Synthesis, Oxford science Publ., Oxford (1992).

	PF	ROGRA	M ()UT	'CO	MES	5 (P	0)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	2	2	1			1	2	1	1
CO-2	3	3	2	2	1			1	2	1	1
CO-3	3	3	2	2	1			1	2	1	1
CO-4	3	3	2	2	1			1	2	1	1
CO-5	3	3	2	2	1			1	2	1	1
CO-6	3	3	2	2	1			1	2	1	1
Average	3	2.83	2	2	1			1	2	1	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 4 th Sem.
Course Title: Advanced Solid State Chemistry and Spectroscopy	Subject Code: TIU-PCH-T212
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

Enable the student to:

- 1. Understand Solid State Chemistry Learn solid-state reactions, phase transitions, and material properties.
- 2. Explore Electronic and Magnetic Properties Study band theory, semiconductors, and magnetic behavior.
- 3. Apply Advanced Spectroscopy Use modern spectroscopic techniques for material analysis.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the principles of solid-state reactions, phase transitions, and thermal properties of materials.	K1
CO-2:	Understand the free electron theory, band theory, and the electronic structure of solids.	K2
CO-3:	Apply the band theory concepts to analyze the behavior of semiconductors and p-n junctions.	K3
CO-4:	Analyze the magnetic properties of materials and their temperature dependence.	K4
CO-5:	Analyze the various spectroscopic techniques and their applications in material characterization.	K4
CO-6:	Understand the role of advanced spectroscopy, including fluorescence and microscopy techniques, in studying material properties.	K2

COURSE CONTENT :

MODULE 1:	Advanced Solid State Chemistry	26 Hours					
Solid State Reactions: General principles and experimental procedure of solid state reactions,							
growth of single crystals: Czochralski method, Bridgman and Stockbarger methods.							
Phase Transitions: Thermodynamic and Burger's classification of phase transition, kinetics of							
phase transition, n	ucleation and growth.						

Thermal Properties of Solids: Specific heat- lattice heat capacity, Einstein theory, Debye theory, Born's modification of the Debye theory.

Free electron theory of metals: Free electron gas model of metals, free electron gas in a onedimensional and three dimensional box, filling up of the energy levels.

Band theory of solids: Wave functions in a periodic lattice and the Bloch theorem, The Kronig-

Penny model, the tight binding approximation, Band theory of insulators and semiconductors, intrinsic semiconductors, extrinsic semiconductors, doped semiconductors, p-n junctions.

Magnetic Properties: Behaviour of substances in a magnetic field, effect of temperature: Curie and Cuire-Weiss law, origin of magnetic moment, ferromagnetic, antiferromagentic and ferromagnetic ordering, super exchange, magnetic domains, hysteresis.

MODULE 2:		Adva	nced Spect	trosc	ору		18 Hours
Nonradiative tran	nsition, polarise	d light	emission	and	absorption: anis	sotrop	oy, solvation
dynamics, resonar	dynamics, resonance energy transfer, fluorescence quenching, and introduction of nonlinear						
spectroscopy.							
Application of las	sers as excitatio	n sourc	e, time res	solved	l fluorimetry, tra	insien	t absorption
spectroscopy, sur	spectroscopy, surface plasmon spectroscopy, multiphoton spectroscopy, single molecule						
spectroscopy, fluo	rescence correla	tion spe	ctroscopy,	upcor	version, microsc	opy (d	optical, phase
contrast, confocal,	FLIM), SERS, CA	RS.					
TOTAL LECTURES	S						44 Hours

Books:

- 1. A. R. West, Solid State Chemistry and its Applications, (1984) John Wiley and Sons, Singapore.
- 2. L.V. Azaroff, Introduction to Solids, (1977) Tata McGraw-Hill, New Delhi.
- 3. A. J. Dekker, Solid State Physics, Prentice Hall
- 4. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc., New York, Chichester.
- 5. J. M. Hollas, Modern Spectroscopy, 4_{th}edition (2004) John Wiley & Sons, Ltd., Chichester.
- 6. J.R. Lakowicz, Principles of Fluorescence Spectroscopy
- 7. W. Demtroder, Laser Spectroscopy.
- 8. B. K. Agarwal and M. Eisner, Statistical Mechanics, (1988) Wiley Eastern, New Delhi.
- 9. D. A. McQuarrie, Statistical mechanics, (1976) Harper and Row Publishers, New York.

PROGRAM OUTCOMES (PO)							PROGRAM S	PECIFIC OUTO	COMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	2	2	1			1	2	1	1
CO-2	3	3	2	2	1			1	2	1	1
CO-3	3	3	2	2	1			1	2	1	1
CO-4	3	3	2	2	1			1	2	1	1
CO-5	3	3	2	2	1			1	2	1	1
CO-6	3	3	2	2	1			1	2	1	1
Average	3	2.83	2	2	1			1	2	1	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 4 th Sem.		
Course Title: Advanced Materials Chemistry	Subject Code: TIU-PCH-T232		
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4		

Enable the student to:

- 1. Understand material types and properties Learn the classification, structure, and properties of various materials.
- 2. Explore advanced and nanomaterials Study emerging materials and their applications in technology.
- 3. Learn material characterization techniques Gain knowledge of key techniques for analyzing material properties.

COURSE OUTCOME :

On completion of the course, the student will be able to:

	•	
CO-1:	Remember the different types of materials based on their structure, properties, and applications.	K1
CO-2:	Understand the significance of advanced materials in various technological domains.	K2
CO-3:	Apply the fundamentals of nanomaterials, their synthesis, and size-dependent properties.	К3
CO-4:	Analyze the different types of advanced materials used in energy, electronics, and biomedical applications.	K4
CO-5:	Understand the suitable characterization techniques for analyzing material properties.	K2
CO-6:	Apply the data from various material characterization methods to understand material behavior.	К3

COURSE CONTENT :

MODULE 1:	Introduction to materials	4 Hours						
Classification of materials, semiconducting materials, organic soft materials, ceramics,								
composites, material characterization techniques, correlation between materials structure and								
their properties,	their properties, structure and properties of technologically important crystalline and 35							
amorphous mate	rials, recent breakthroughs in materials chemistry.							
MODULE 2:	Different types of advanced materials and their utility	20 Hours						
Semiconducting Materials: Semiconductor Devices, Phase Change Materials in Memory								
Technology, Thermoelectric, Superconductors, Topological Insulators, Emerging materials in								
the device indust	ry such as graphene and 2D materials.	-						

Optical/Opto-electronic Materials: Light Emitting Diodes, Photosensors, Photovoltaics.

Structural & Basic Applied Materials: Structural Materials, Amorphous Materials, Smart & Responsive Materials, Bio-inspired materials.

Thermal Materials Application: Thermochromics.

Energy Materials: Batteries and Supercapacitors, Fuel Cells,Hydrogengeneration,Hydrogen storage, Carbon capture and sequestration.

Biomaterials: Synthetic and naturally derived biomaterials, Organic and inorganic polymers, composite biomaterials, Clinical applications, Decellularization, Hydrogels, Tissue engineering, Regenerative medicine, Biodegradable materials.

MODULE 3:	Nanomaterials	10 Hours						
Fundamentals of	Fundamentals of nano science: definition, nano versus bulk, quantum confinement: nanoscale							
in 1D, 2D and 3	3D with examples, synthesis of nano materials: top-down ar	nd bottom-up						
approaches, siz	e dependent properties; nanoclusters and nanowires, se	emiconductor						
nanoparticles, ch	aracterization of nanomaterials, applications of nano materials.							
MODULE 4:	Instrumental Techniques for characterization of	10 Hours						
	nanomaterials							
Basic principles	Basic principles and applications of electron microscopies (SEM, TEM), scanning probe							
microscopies (S	microscopies (STM), atomic force microscopy (AFM), optical microscopies [confocal							
microscopy, scanning near field optical microscopy, particle size analysis (DLS)], thermal (DSC,								
DTA) and optical	DTA) and optical (IR, FTIR, Raman) methods.							
TOTAL LECTUR	ES	44 Hours						

Books:

- 1. B. Fahlman, Materials Chemistry, 3rd Edition (2011), Springer, New York.
- 2. J. B. Park & J. D. Bronzino, Biomaterials: Principles and Applications (2002), CRC Press, Boca Raton.
- 3. A. K. Das, Introduction to Nanomaterials (Year), Publisher, Location.
- 3. G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications (2004), Imperial College Press, London.
- 4. J. I. Goldstein et al., Scanning Electron Microscopy and X-Ray Microanalysis: A Textbook for Biologists, Materials Scientists, and Geologists, 2nd Edition (1992), Springer, New York.
- 5. H. Lodish et al., Molecular Cell Biology, 7th Edition (2013), Macmillan Publishers, New York.

	P	ROGRA	M (DUT	COI	MES	(PC))	PROGRAM SPECIFIC OUTCOMES (PSO)			
	1	2	3	4	5	6	7	8	1	2	3	
CO-1	3	2	2	2	1			1	2	1	1	
CO-2	3	3	2	2	1			1	2	1	1	
CO-3	3	3	2	2	1			1	2	1	1	
CO-4	3	3	2	2	1			1	2	1	1	
CO-5	3	3	2	2	1			1	2	1	1	
CO-6	3	3	2	2	1			1	2	1	1	
Average	3	2.83	2	2	1			1	2	1	1	

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 4 th Sem.		
Course Title: Energy Conversion and Storage	Subject Code: TIU-PCH-T234		
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4		

Enable the student to:

- 1. Understand power systems, transmission, distribution, and the role of various energy resources.
- 2. Explore energy conversion methods, including thermal, nuclear, solar, wind, and biomass, along with waste-to-energy technologies.
- 3. Analyze different energy storage techniques and their applications in industries, power plants, and renewable energy systems.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the different power system components and energy resources based on their availability and utilization.	K1
CO-2:	Understand the various energy conversion methods, including thermal, nuclear, solar, wind, and biomass-based technologies.	K2
CO-3:	Apply the principles of waste-to-energy conversion and its role in sustainable energy production.	K3
CO-4:	Analyze the different energy storage methods and their applications in power systems and industries.	K4
CO-5:	Understand the suitable energy storage techniques for specific industrial and renewable energy applications.	K2
CO-6:	Analyze the impact of energy resources, conversion processes, and storage methods on efficiency and sustainability.	K4

COURSE CONTENT :

MODULE 1:	Power system	5 Hours						
Introduction to Power System: Transmission and Distribution. Power crisis in India, future								
trends, economic considerations, significance of load factor and diversity factor,								
availability and utilization of modern resources like coal, petroleum, gaseous fuels, hydel and								
nuclear fuel, tradit	ional resources, like firewood, cattle dung, animal power and sol	ar sources.						
MODULE 2:	Energy conversion 30 Hou							
Principles of er	ergy conversion, heat engines, thermal power plants	using coal,						
petroleumnuclear power plants using coal, petroleum nuclear fuels and hydel energy,								
fundamentalsof energy conversion using solar thermal, photovoltaic, wind pumps, wind								
turbine aerodynan	nics, fuel cell, biogas, firewood, windmini-hydel and tidal resourc	ces.						

Introduction, characterization of wastes; classification of wastes; energy production from wastes through incineration, gasification; management and treatment of hazardous and nonhazardous industrial waste; Municipal sewage waste- Energy production from organic waste through anaerobic digestion; Cultivation of algal biomass from wastewater, wastewater treatment and energy production from algae.

MODULE 3:Energy storage8 HoursNeed of energy storage; Different modes of Energy Storage like mechanical Energy Storage,
Thermal energy storage, electro-chemical energy storage, electromagnetic energy storage.
Some areas of application of energy storage: Food preservation; Waste heat Recovery; Solar
energy storage; Greenhouse heating; Power plant applications; Drying and heating for process
industries.TOTAL LECTURES43 Hours

Books:

- 1. S. Kuldeep, Basic Electrical Engineering, 1st Edition (2009), New Age International Publishers, New Delhi.
- 2. N. V. Khartchenko, Advanced Energy Systems, 1st Edition (2008), Taylor & Francis, Washington D.C.
- 3. C. S. Solanki, Solar Photovoltaics: Fundamentals, Technologies and Applications, 1st Edition (2011), Prentice Hall of India, New Delhi.
- 4. L. L. Freris, Wind Energy Conversion Systems, 1st Edition (1990), Prentice Hall, New Jersey.
- 5. D. A. Spera, Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering, 1st Edition (1994), ASME Press, New York.
- 6. B. Mazumdar, A Textbook of Energy Technology: Both Conventional and Renewable Sources of Energy, 1st Edition (2012), New Age International Publishers, New Delhi.
- 7. G. D. Rai, Non-Conventional Energy Sources, 1st Edition (1989), Khanna Publishers, New Delhi.
- 8. J. Jensen & B. Sorensen, Fundamentals of Energy Storage, 1st Edition (1984), John Wiley & Sons, New York.

	PF	ROGRA	M ()UT	'CO]	MES	5 (P	0)	PROGRAM S	PECIFIC OUTO	COMES (PSO)
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	2	2	1		1	1	2	1	1
CO-2	3	3	2	2	1		1	1	2	1	1
CO-3	3	3	2	2	1		1	1	2	1	1
CO-4	3	3	2	2	1		1	1	2	1	1
CO-5	3	3	2	2	1		1	1	2	1	1
CO-6	3	3	2	2	1		1	1	2	1	1
Average	3	2.83	2	2	1		1	1	2	1	1

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 4 th Sem.			
Course Title: Chemical Biology	Subject Code: TIU-PCH-T236			
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4			

Enable the student to:

- 1. Understand biomolecules, enzyme mechanisms, and their applications.
- 2. Explore cell structure, functions, and signaling processes.
- 3. Analyze biomolecular structure using NMR and X-ray techniques.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Remember the different biomolecules and their roles in biological systems.	K1
CO-2:	Understand the enzyme mechanisms and their applications in biotechnology.	К2
CO-3:	Analyze the cell structure, intracellular processes, and signaling pathways.	К3
CO-4:	Understand the prokaryotic and eukaryotic cell organization and transport mechanisms.	K2
CO-5:	Apply suitable techniques for determining biomolecular structures.	К3
CO-6:	Analyze the NMR and X-ray crystallography data for biomolecular structure determination.	K4

COURSE CONTENT :

MODULE 1:	The molecules of life	16 Hours						
Nucleic acids, proteins and enzymes, carbohydrates, lipids. Mechanism in biological chemistry:								
(i) Mechanis	n of enzyme action, examples of enzyme mechanisms for	r chymotrypsin,						
ribonuclease,	lysozyme and carboxypeptidase A (ii) Enzyme catalysed reactio	ns – examples of						
nucleophilic d	lisplacement on a phosphorus atom, coupling of ATP cleavag	e to endergonic						
processes, pro	oton transfer reactions to and from carbon (iii) Mechanism of rea	actions catalysed						
by cofactors in	ncluding coenzyme A, NAD+, NADH, FAD and thiamine pyrophos	sphate; Chemical						
synthesis of p	eptides and proteins; Use of enzymes in organic synthesis; Strue	ctural analysis of						
proteins; Pro	tein folding; Biotechnological applications of enzymes: Enzy	me purification,						
immobilizatio	n of enzymes, enzyme therapy, enzyme and recombinant DNA te	chnology.						
MODULE 2:	Cell biology	12 Hours						
Introduction to cells and genomes; Internal organization of the cell, membrane structure,								
intracellular	intracellular compartments and the cytoskeleton; Cell cycle and programmed cell death.							
Prokaryotic and eukaryotic cell organizations; intracellular compartments and transport:								
membrane bound organelles, protein sorting, and vesicular transport, secretory pathways,								
endocytosis pathways, phagocytosis and pinocytosis; cell communication: general principles								
of cell signalir	g, G-protein linked receptors and enzyme linked receptors.							
MODULE 3:	Structure determination of Biomolecules	16 Hours						

Introduction to quantum spin states; Energy levels and transitions; Basic one-dimensional NMR experiment; Vector model; Product operators; Multi-dimensional NMR experiments; Relaxation; Fourier transformation and data processing; Spectrometer basics; Application to biological problems.

Diffraction theory - waves, interference and complex numbers; Atoms, crystals and reciprocal space; X-ray sources: from generators to synchrotrons; Crystallization, data collection, processing, complications; The phase problem: introduction to phasing methods; Introduction to fitting, refinement and validation.

TOTAL	LECTURES	

Books:

- 1. Voet, D., Voet, J. G., & Pratt, C. W. Fundamentals of Biochemistry: Life at the Molecular Level. Wiley, 2016.
- 2. Dobson, C. M., Gerrard, J. A., & Pratt, A. J. Foundations of Chemical Biology. Oxford University Press, 2002.
- 3. Nelson, D. L., & Cox, M. M. Principles of Biochemistry. CBS Publishers, 2017.
- 4. Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Scott, M. P., & Zipursky, S. L. Molecular Cell Biology, 7th ed. W.H. Freeman, 2013.
- 5. Cavanagh, J., Fairbrother, W. J., Palmer, A. G., Rance, M., & Skelton, J. J. Protein NMR Spectroscopy: Principles and Practice, 2nd ed. Academic Press, 2007.
- 6. Rupp, B. Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology, 1st ed. Garland Science, 2009.

	PF	ROGRA	M ()UT	'CO	MES	5 (P	0)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	2	2	1			1	2	1	1
CO-2	3	3	2	2	1			1	2	1	1
CO-3	3	3	2	2	1			1	2	1	1
CO-4	3	3	2	2	1			1	2	1	1
CO-5	3	3	2	2	1			1	2	1	1
CO-6	3	3	2	2	1			1	2	1	1
Average	3	2.83	2	2	1			1	2	1	1

CO-PO MAPPING

44 Hours

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 4 th Sem.			
Course Title: Medicinal Chemistry	Subject Code: TIU-PCH-T238			
Contact Hours/Week: 3-1-0 (L-T-P)	Credit: 4			

Enable the student to:

- 1. Understand drug synthesis, mechanisms, and structure-function relationships across various therapeutic categories.
- principles, molecular modeling techniques, 2. Explore drug design and pharmacodynamics, including drug-receptor interactions and pharmacokinetics.
- 3. Analyze nanomedicine applications, nanocarriers for drug delivery, and the toxicological aspects of nanomaterials.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	1: Remember the different types of drugs based on their synthesis, mechanism of action, and therapeutic applications.									
CO-2:	Understand the principles of drug design, molecular modeling, and QSAR studies.									
CO-3:	Understand the pharmacodynamics, including drug-receptor interactions, binding forces, and pharmacokinetics.									
CO-4:	Apply various nanocarriers used in drug delivery and their biomedical applications.									
CO-5:	Analyze the structure-function relationships in antibiotics, antivirals, and anticancer drugs.									
CO-6:	Analyze the toxicological effects of nanomedicines and their impact on human health.									

COURSE CONTENT :

MODULE 1:	Synthetic strate	14 Hours							
	relationship of	f different types of a	drugs						
Synthesis, semi-synthesis, detailed mechanism of action and structural modifications of									
Penicillin antibiotics.	Penicillin antibiotics. General structure and antimicrobial activities of Cephalosporins,								
Tetracyclins and new	Tetracyclins and newer generation of antibiotics. General introduction on virus and								
mechanism of action of	mechanism of action of antiviral drugs towards DNA and RNA virus. General principle of								
vaccination strategy to combat with viral infection. Synthesis and mechanism of action of									
representative examp	les of antitumor, a	anticancer, DNA cl	leaving ag	ents, analgesics,					
antidepressants,	antipsdychotics,	anti-infla	ammatory	agents,					
cardiovascularagents, diuretics, antibacterials, antibiotics, antivirals, antimalarials, antiamoe									

bics, drugs for neoplastic diseases.										
MODULE 2:	MODULE 2:Drug design and pharmacodynamics22 Hours									
Drug design and synthesis, Molecular and quantum mechanics; Drawing chemical structures,										
equations, and diagram	ms; 3D structures; Molecular modelling and Ener	gy Minimization;								
Molecular properties,	Conformational analysis, Docking Procedures, I	De novo design,								
Molecular Recognition	, Receptor Based Molecular Modeling, QSAR studie	es, Antineoplastic								
agents, cardiovascula	r drugs, Local anti-infective drugs, Antimala	rial, Antibiotics,								
Anticholenergic and CN	IS-active drugs.									
Pharmacodynamics: di	fferent types of drugs and drug targets, drug bindi	ng forces, role of								
enzymes. Drug – rece	ptor interactions, mechanism of drug action, agon	ists, antagonists.								
Affinity, efficacy and	potency of a drug, dose-response curves. Pharma	acokinetics: drug								
absorption, distribution	n, metabolism (Phase–I and Phase– II transformation	s), excretion.								
MODULE 3: Nanomedicines 8 Hours										
Introduction to nanomedicine-Overview of nanotechnology from medical perceptive,										
different types of nanobiomaterials and their biomedical applications, Nanocarriers (e.g.										
liposomes, polymer capsules, nanoparticles, porous materials, nanogels), for drug delivery										
applications, Cellular na	anomachines, Toxicology of nanomaterials.									
TOTAL LECTURES		44 Hours								

Books:

- 1. A. K. Bose and M. S. Manhas, Beta Lactams (Vol I and II), 1st Edition, 2015, Springer.
- 2. G. L. Patrick, Medicinal Chemistry, 5th Edition, 2013, Wiley.
- 3. M. E. Wolff (Ed.), Burger's Medicinal Chemistry and Drug Discovery, 7th Edition, 2010, Wiley.
- 4. R. B. Silverman, The Organic Chemistry of Drug Design and Drug Action, 2nd Edition, 2004, Academic Press.
- 5. A. Lednicer and A. M. Dand, The Organic Chemistry of Drug Synthesis (Vol. I-VI), 1993, John Wiley & Sons.
- 6. M. P. S. Ishar and A. Faruk, Synthesis of Organic Medicinal Compounds, 2016, Elsevier.
- 7. G. Thomas, Fundamentals of Medicinal Chemistry, 2nd Edition, 2018, Wiley.
- 8. Dr. Parag Diwan and Ashish Bharadwaj (Eds.), Nano Medicines, 2006, Pentagon Press, ISBN 81-8274-139-4.
- 9. C. M. Niemeyer and C. A. Mirkin, Nanobiotechnology: Concepts, Applications, and Perspectives, 2004, Wiley-Interscience.

	PF	ROGRA	M ()UT	'CO	MES	5 (P	0)	PROGRAM S	PECIFIC OUTO	COMES (PSO)
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	2	2	2	1			1	2	1	2
CO-2	3	3	2	2	1			1	2	1	2
CO-3	3	3	2	2	1			1	2	1	2
CO-4	3	3	2	2	1			1	2	1	2
CO-5	3	3	2	2	1			1	2	1	2
CO-6	3	3	2	2	1			1	2	1	2
Average	3	2.83	2	2	1			1	2	1	2

Program: M. Sc. Chemistry	Year, Semester: 2 nd Yr., 3 rd Sem.
Course Title:Project-II	Subject Code: TIU-PCH-P292
Contact Hours/Week: 0-0-12 (L-T-P)	Credit: 6

Enable the student to:

- 1. Develop research skills through literature surveys, experimental techniques, and theoretical methodologies.
- 2. Enhance proficiency in instrumentation and analytical methods for scientific research.
- 3. Prepare students for careers in industry, academia, and PhD programs by strengthening research and problem-solving abilities.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Apply research methodologies and experimental techniques to conduct independent investigations in chemistry.							
CO-2:	Analyze experimental and theoretical data to interpret results and draw meaningful conclusions.							
CO-3:	Evaluate scientific literature to identify research gaps and formulate research hypotheses.	К5						
CO-4:	Evaluate experimental or theoretical approaches to optimize research methodologies and instrumentation.	К5						
CO-5:	Analyze the research findings and integrate constructive feedback to enhance scientific communication.	K4						
CO-6:	Create a comprehensive research dissertation and present findings with clarity and scientific rigor.	K6						

COURSE CONTENT :

Project Dissertation

Each student will undertake an independent research project in a specialized area of chemistry, aligned with their interests and career aspirations. The project will be conducted over the entire semester under the supervision of a faculty mentor, allowing students to gain hands-on experience in research methodologies, experimental techniques, and data analysis. **Project Components:**

1. Literature Survey:

- Conduct a thorough review of relevant scientific literature to understand the background, existing research gaps, and the significance of the chosen topic.
- > Formulate research objectives based on the identified gaps.

2. Research Methodology:

- Develop a research plan, selecting appropriate experimental or computational techniques.
- > Understand and utilize laboratory instrumentation, chemical synthesis, analytical techniques, or theoretical models, depending on the nature of the project.

3. Data Collection & Analysis:

- > Perform experiments or simulations systematically to generate reliable data.
- > Use statistical and analytical tools to interpret results and identify trends.

4. Results & Discussion:

- > Compare experimental or theoretical findings with literature reports.
- > Discuss implications, limitations, and possible improvements.

5. Scientific Writing & Reporting:

- Prepare a structured dissertation including an introduction, methodology, results, discussion, and conclusion.
- > Emphasize clarity, coherence, and proper referencing.

6. **Presentation & Evaluation:**

- Present findings in a formal setting, demonstrating effective communication and critical thinking.
- > Incorporate feedback from faculty and peers to refine the dissertation.

TOTAL LECTURES

168 Hours

	PROGRAM OUTCOMES (PO)							0)	PROGRAM SPECIFIC OUTCOMES (PSO)		
	1	2	3	4	5	6	7	8	1	2	3
CO-1	3	3	3	3	2	1	1	3	3	3	3
CO-2	3	3	3	3	2	1	1	3	3	3	3
CO-3	3	3	3	3	2	1	1	3	3	3	3
CO-4	3	3	3	3	2	1	1	3	3	3	3
CO-5	3	3	3	3	2	1	1	3	3	3	3
CO-6	3	3	3	3	2	1	1	3	3	3	3
Average	3	3	3	3	2	1	1	3	3	3	3