

Department of Electronics and Communication Engineering

Seventh Semester

Program: B.Tech. in ECE	Year, Semester: 4 th , 7 th .
Course Title: Career Advancement & Skill Development-VII : "Embedded C"	Subject Code: TIU-UEC-S405A
Contact Hours/Week: 0-0-2	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand Embedded Systems Basics: Introduce the fundamental concepts of embedded systems, including architecture, microcontrollers, and real-time system requirements.
- 2. Learn Embedded C Programming: Develop proficiency in writing and debugging C programs tailored for embedded systems, with emphasis on memory constraints and hardware interaction.
- 3. Work with Microcontroller Hardware: Gain hands-on experience interfacing with microcontroller peripherals such as GPIO, timers, ADCs, and communication protocols (UART, SPI, I2C).
- 4. Apply Embedded C in Real-Time Applications: Implement real-time embedded applications, focusing on task scheduling, interrupt handling, and performance optimization.
- 5. Design and Deploy Embedded Projects: Build, test, and deploy embedded projects that integrate hardware and software, demonstrating the complete development lifecycle.

COURSE OUTCOME:

CO-1:	Recall basic concepts of embedded systems and microcontroller architecture	K1
CO-2:	Describe the syntax, structure, and features of Embedded C programming.	K2
CO-3:	Explain how Embedded C interacts with hardware components like GPIO, timers, and interrupts	K2
CO-4:	Apply Embedded C programming to control basic hardware peripherals such as LEDs, switches, and displays	К3

CO-5:	Demonstrate the use of communication protocols (UART, SPI, I2C) in Embedded C applications	К3
CO-6:	Analyze the functionality and performance of Embedded C programs through simulation and testing tools.	K4

MODULE 1: Introduction to Embedded Systems	6 Hours		
Definition and characteristics of embedded systems, Differences between embedded			
purpose systems, Classification and applications of embedded systems, Overview of microcontroller vs			
microprocessor, Embedded system development life cycle (EDLC), Introduction to microcontroller			
architectures (e.g., 8051, AVR, PIC, ARM)			
MODULE 2: Basics of Embedded C Programming	4 Hours		
Basics of Embedded C Programming , Introduction to C language for embedded system			
variables, operators, and expressions, Control structures (if, switch, loops), Functions,	arrays, strings,		
and pointers, Bit manipulation techniques, Memory management in embedded C			
MODULE 3: Microcontroller Programming Basics	6 Hours		
Microcontroller Programming Basics, icrocontroller components: CPU, RAM			
ports, Architecture and pin configuration of a sample microcontroller (e.			
ATmega328), Programming tools: IDEs, compilers, and simulators, Writing and			
Embedded C program, Downloading code to microcontroller using programmer, LE	J blinking and		
basic I/O programming			
MODULE 4: Interfacing Digital I/O Devices	4 Hours		
Interfacing Digital I/O Devices, Interfacing switches, LEDs, buzzers, Interfacing 7-se	gment displays		
and LCD (16x2), Introduction to keypad interfacing,			
Debouncing techniques and input polling, Using timers and counters for delays and mea	surement		
	< 		
MODULE 5: Interrupts and Communication Protocols	6 Hours		
Interrupts and Communication Protocols, Concept of interrupts and types of interrupts, Writing ISR			
(Interrupt Service Routines), External and internal interrupts programming, Introduction to UART, SPI,			
and I2C protocols, Serial communication: data transfer and receiving, Sensor interfacing using I2C/SPI			
MODULE 6: Embedded Systems Applications	6 Hours		
Embedded Systems Applications and Mini Project, PWM generation and application			
control), ADC (Analog to Digital Converter) interfacing, Real-time clock (RT			
Introduction to real-time operating systems (RTOS) basics (optional), Mini p			
development, and demonstration of an embedded application (e.g., temperature			
automation, etc.)			
TOTAL LAB HOURS	32 Hours		

Textbooks:

- Embedded C Programming Author: Mark Siegesmund Publisher: Newnes
 Programming Embedded Systems in C and C++ Author: Michael Barr Publisher: O'Reilly Media

- 3. AVR Microcontroller and Embedded Systems: Using Assembly and C Author: Muhammad Ali Mazidi, Sarmad Naimi, Sepehr Naimi Publisher: Pearson
- 4. Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language and C, Author: Yifeng Zhu, Publisher: E-Man Press LLC
- 5. The C Programming Language Author: Brian W. Kernighan and Dennis M. Ritchie Publisher: Prentice Hall

Program: B. Tech. in ECE (BEC)	Year, Semester: 4th Yr., 7rd Sem.
Course Title: RF and Mfcrowave Engineering	Subject Code: TIU-UEC-E405
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Department of Electronics and Communication Engineering

COURSE OBJECTIVE:

Enable the student to:

- 1. To introduce the fundamental concepts of microwave engineering, including microwave properties and system components.
- 2. To develop an understanding of transmission line theory and waveguides, including their modes, cutoff frequencies, and impedance characteristics.
- 3. To equip students with knowledge of impedance matching techniques using the Smith chart and scattering matrix (S-matrix) analysis.
- 4. To provide insights into the design and operation of passive and non-reciprocal microwave components, such as resonators, couplers, isolators, and circulators.
- 5. **To familiarize students with microwave sources and their applications**, including klystrons, magnetrons, TWTs, and solid-state devices.

COURSE OUTCOME:

r		
CO-1:	Understand Microwave System Components – Demonstrate knowledge of various microwave system components, their characteristics, and applications.	K2
CO-2:	Analyze Microwave Transmission Lines - Apply transmission line theory to	
CO-3:	Litilize Smith Chart and S Matrix Interpret the Smith chart for impedance	
CO-4:	Design Microwave Waveguides and Planar Structures – Develop an	
CO-5:	Evaluate Passive and Non-Reciprocal Components – Analyze the working principles of passive microwave components like resonators, tees, couplers, filters, as well as non-reciprocal devices like isolators and circulators.	K5

	Understand and Explain Microwave Sources - Explain the operation of	
CO-6:	microwave sources such as klystrons, magnetrons, TWTs, and understand the design	K2
	of microwave amplifiers and oscillators.	

MODULE 1:	MICROWAVE PROPERTIES, WAVEGUIDES, TRANSMISSION LINE THEORY	8 Hours
Microwaya & ita r	roperty, Rectangular and Circular Waveguide: modes, cutoff frequency	· Transmission
	Voltage Distribution, Input impedance, Short Circuit and Open Circuit,	Quarter wave
Transformer.		
		0.11
MODULE 2:	SMITH CHART, IMPEDANCE MATCHING, S-MATRIX	8 Hours
	npedance matching techniques, S-matrix: representation, properties, shi	ift in reference
planes, generalized	S-matrix.	
MODULE 3:	WAVE PROPAGATION IN PLANAR LINES, LUMPED	8 Hours
	ELEMENTS	
Wave propagation	in planar lines: design, effective dielectric constant, attenuation, disp	ersion nower-
		ersion, power-
handling capability	; lumped elements and their design.	ersion, power-
	· · · · · · · · · · · · · · · · · · ·	
	r; lumped elements and their design. PASSIVE COMPONENTS	8 Hours
MODULE 4:	PASSIVE COMPONENTS	8 Hours
MODULE 4: Passive componen	PASSIVE COMPONENTS ts: (i) Reciprocal Type: Resonators/cavities, Attenuators, Junction Tee	8 Hours es, Magic Tee,
MODULE 4: Passive componen Directional couple	PASSIVE COMPONENTS ts: (i) Reciprocal Type: Resonators/cavities, Attenuators, Junction Tee ers, power splitters/combiners, filters; (ii) Non- reciprocal compone	8 Hours es, Magic Tee,
MODULE 4: Passive componen	PASSIVE COMPONENTS ts: (i) Reciprocal Type: Resonators/cavities, Attenuators, Junction Tee ers, power splitters/combiners, filters; (ii) Non- reciprocal compone	8 Hours es, Magic Tee,
MODULE 4: Passive componen Directional couple	PASSIVE COMPONENTS ts: (i) Reciprocal Type: Resonators/cavities, Attenuators, Junction Tee ers, power splitters/combiners, filters; (ii) Non- reciprocal compone	8 Hours es, Magic Tee, ents: isolators,
MODULE 4: Passive componen Directional couple circulators and Gyr MODULE 5:	PASSIVE COMPONENTS ts: (i) Reciprocal Type: Resonators/cavities, Attenuators, Junction Tee ers, power splitters/combiners, filters; (ii) Non- reciprocal compone rators.	8 Hours es, Magic Tee, ents: isolators, 8 Hours
MODULE 4: Passive componen Directional couple circulators and Gyr MODULE 5: Microwave source	PASSIVE COMPONENTS ts: (i) Reciprocal Type: Resonators/cavities, Attenuators, Junction Teers, power splitters/combiners, filters; (ii) Non- reciprocal componerators. MICROWAVE SOURCES	8 Hours es, Magic Tee, ents: isolators, 8 Hours

Books:

- 1. D. M. Pozar, "Microwave Engineering", Wiley
- 2. R.E. Collin, "Microwave Circuits", McGraw Hill
- 3. K. C. Gupta and I. J. Bahl, "Microwave Circuits", Artech house
- 4. D. M. Pozar, "Microwave Engineering", Wiley
- 5. R. E. Collin, "Foundations for Microwave Engineering", Wiley
- 6. S. Y. Liao, "Microwave Devices & Circuits", Prentice Hall
- 7. P. A. Rizzi, "Microwave Engineering: Passive Circuits", Prentice Hall
- 8. R. Ludwig & P. Bretchko, "RF Circuit Design", Pearson
- 9. K. C. Gupta, "Microwaves", New Age
- 10. M. Mitra, "Microwave Engineering", Dhanpat Rai
- 11. G. S. N. Raju, "Microwave Engineering", I. K. International
- 12. J. P. Agarwal, M. L. Sisodia & V. L. Gupta, "Microwave and Radar Engineering", New Age
- 13. E. C. Jordan & K. G. Balmain, "Electromagnetic Fields and Radiating Systems", McGraw Hill

Department of Electronics and Communication Engineering

Program: B.Tech in Electronics & Communication Engineering	Year, Semester: Final YR. 7 th SEMESTER
Course Title: Digital Image and Video	Subject Code:
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Course Objective :

The **course objective:** The course aims to provide students with foundational knowledge and practical skills in digital image and video processing, covering topics like image enhancement, segmentation, wavelet transforms, compression, and video coding. Students will learn to apply these techniques to analyze and process digital images and videos effectively.

Course Outcomes :

CO1: Understand the fundamentals of digital image sensing, acquisition, and pixel relationships. **CO2**: Apply image enhancement techniques, including transformations and filters, to improve image quality.

CO3: Perform color image processing and apply techniques for segmentation and color corrections. **CO4**: Use wavelets and multi-resolution techniques for advanced image processing and compression. **CO5**: Implement video coding and segmentation techniques, including motion estimation and video object tracking.

CO6: Demonstrate the ability to design and implement image and video processing algorithms using software tools for real-world applications.

MODULE 1:	Digital Image Fundamentals and Image Enhancement	8 Hours

Image Sensing a Image Sampling Basic Relations Gray Level Tran Histogram Equa	on: Elements of visual perception. and Acquisition: Understanding the process of capturing images. g and Quantization: Digitization of images, pixel representation. hips Between Pixels: Neighborhood, adjacency, connectivity, and distance n nsformations: Contrast adjustments and various transformation techniques. alization and Specifications: Contrast improvement through histogram techni Sharpening Filters: Linear filters, order-statistics filters, first and second der	iques.
MODULE 2:	: Frequency Domain Filters and Color Image Processing	8 Hours
Frequency Dom RGB, YUV, HS Color Transforr Tone and Color Color Image Sn	hal DFT and Its Inverse: Fundamentals of frequency domain filtering. hain Filters: Low-pass and high-pass filters in the frequency domain. Color SI models and their applications. hations: Formulation, color complements, and color slicing. Corrections: Techniques for adjusting tone and colors. hoothing and Sharpening: Methods for improving color images. ation: Segmentation techniques in color images.	Models:
MODULE 3:	Wavelets, Multi-resolution, and Image Compression	8 Hours
Multi-resolution	orm: Continuous wavelet transform and wavelet bases. 1 Image Analysis: Decomposition of images using wavelets and subband filters: 1 Techniques for multi-level analysis and image compression.	er banks.
Wavelet Transfe Multi-resolution Wavelet Packet Redundancy in Lossless Compt Lossy Compres	n Image Analysis: Decomposition of images using wavelets and subband filter	er banks.
Wavelet Transfe Multi-resolution Wavelet Packet Redundancy in Lossless Compr Lossy Compress Compression St	n Image Analysis: Decomposition of images using wavelets and subband filte s: Techniques for multi-level analysis and image compression. Images: Types of redundancy (inter-pixel, psychovisual). ression: Predictive and entropy-based methods. sion: Transform coding and DCT-based compression techniques. randards: JPEG and JPEG-2000. Image Segmentation	er banks. 8 Hours
Wavelet Transfe Multi-resolution Wavelet Packet Redundancy in Lossless Compres Compression St MODULE 4: Detection of Dir Thresholding: C Edge Linking an Region-Based S	n Image Analysis: Decomposition of images using wavelets and subband filte s: Techniques for multi-level analysis and image compression. Images: Types of redundancy (inter-pixel, psychovisual). ression: Predictive and entropy-based methods. sion: Transform coding and DCT-based compression techniques. candards: JPEG and JPEG-2000.	8 Hours
Wavelet Transfor Multi-resolution Wavelet Packet Redundancy in Lossless Compres Compression Ste MODULE 4: Detection of Dia Thresholding: C Edge Linking an Region-Based S Advanced Segn	 Image Analysis: Decomposition of images using wavelets and subband filtes: Techniques for multi-level analysis and image compression. Images: Types of redundancy (inter-pixel, psychovisual). ression: Predictive and entropy-based methods. sion: Transform coding and DCT-based compression techniques. randards: JPEG and JPEG-2000. Image Segmentation scontinuities: Techniques for edge and boundary detection. Global and adaptive thresholding methods for segmentation. nd Boundary Detection: Methods to detect and link edges and boundaries. Segmentation: Techniques for dividing an image into meaningful regions. 	8 Hours

Textbooks

- 1. "Digital Image Processing" by Rafael C. Gonzalez and Richard E. Woods
- 2. "Image Processing, Analysis, and Machine Vision" by Milan Sonka, Vaclav Hlavac, and Roger Boyle
- 3. "Fundamentals of Digital Image Processing" by Anil K. Jain
- 4. "DigitalVideo Processing" by A. M. Tekalp

Department of Electronics and Communication Engineering

Program: B.Tech in Electronics &Communication Engineering	Year, Semester: Final YR. 7 th SEMESTER
Course Title: Electronic Measurement	Subject Code:TIU-UEC-E40#
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Course Objective :

The **course objective** for an Electronics and Instrumentation course is to provide students with a comprehensive understanding of the principles, techniques, and applications of electrical measurements and instrumentation systems. The course aims to:

- 1. Equip students with the knowledge and skills to operate various electrical measurement instruments, including voltmeters, ammeters, wattmeters, and energy meters.
- 2. Enable students to measure and analyze electrical components like resistance, inductance, and capacitance using different measurement techniques.
- 3. Teach students about the design, working, and testing of instrument transformers such as current and potential transformers.
- 4. Provide hands-on experience with electronic measurement tools like oscilloscopes, multimeters, and spectrum analyzers for precise electrical parameter measurements.
- 5. Introduce students to transducers, their types, applications, and signal conditioning techniques for real-world measurement systems.
- 6. Explore advanced applications of instrumentation in emerging technologies, such as

Course Outcomes (COs)

1. **CO1: Understand the fundamental principles of electrical measurements** Students will demonstrate an understanding of electrical measurement instruments such as voltmeters, ammeters, wattmeters, and energy meters, along with their error analysis and usage in practical applications.

- 2. **CO2:** Apply appropriate methods for measuring resistance, inductance, and capacitance Students will be able to measure low, medium, and high resistances, insulation resistance, and use AC bridges to measure inductance and capacitance.
- 3. **CO3:** Analyze the working and performance of instrument transformers Students will understand the design, working principles, and testing of current transformers (CTs) and potential transformers (PTs) and analyze their ratio and phase angle errors.
- 4. **CO4:** Utilize electronic measurement devices and techniques effectively Students will apply electronic voltmeters, multimeters, and oscilloscopes to measure various electrical parameters like time, frequency, and phase angle.
- 5. **CO5: Design and select transducers for measurement and instrumentation applications** Students will select suitable transducers for various applications, including strain gauges, LVDT, piezoelectric transducers, and smart sensors, and understand signal conditioning.
- 6. **CO6: Explore advanced instrumentation systems and emerging applications** Students will gain an understanding of cutting-edge technologies such as biometrics, nanoelectromechanical systems, and flexible electronics, and apply instrumentation knowledge to these fields.

MODULE 1:	Electrical Measurements	6 Hours
	Aeasurement & Errors, Review of indicating and integrating instrument neter – series & shunt type, Wattmeter, Analog & Digital Multimete Q-meter.	
MODULE 2:	Measurement of Resistance, Inductance and Capacitance	4 Hours
	f low, medium and high resistances, insulation resistance measurement, capacitance measurement.	AC bridges for
MODULE 3:	Instrument Transformers	4 Hours
Current and Pot	ential transformers, ratio and phase angle errors, design considerations and	testing.
MODULE 4:	Electronic Measurements	8 Hours
measurements u	neter, multimeter, wattmeter & energy meter. Time, Frequency and phase a using CRO; Spectrum & Wave analyzer. Digital counter, frequency meter, storage oscilloscope	v
MODULE 5:	Instrumentation	8 Hours
Transducers, classification & selection of transducers, strain gauges, LVDT, inductive & capacitive transducers, piezoelectric and Hall-effect transducers, thermisters, thermocouples, Resistance thermometers, photo-diodes & photo-transistors, encoder type digital transducers, signal conditioning and telemetry, basic concepts of smart sensors and application. Data Acquisition Systems		
MODULE 6:	Systems applications	6 Hours

Biometrics, Digital scent technology, Three-dimensional integrated circuit, Molecular electronics, Nano electromechanical systems, Electronic nose, Flexible electronics, E-textiles, Memristor, Thermal copper pillar bump, Spintronics.

Textbooks:

- 1. "Electrical and Electronic Measurements and Instrumentation" by A.K. Sawhney
- 2. "Principles of Electrical Measurement" by E. O. Doebelin
- 3. "Modern Electronic Instrumentation and Measurement Techniques" by Albert D. Helfrick and William D. Cooper
- 4. "Electronic Measurements and Instrumentation" by K. Lal Kishore
- 5. "Transducers and Instrumentation" by D. V. S. Murthy

Reference Books:

- 1. "Instrumentation Measurement and Feedback" by C. A. Parr
- 2. "Electronic Instrumentation" by H.S. Kalsi
- 3. "Electrical Measurement and Measuring Instruments" by S. K. Bhattacharya
- 4. "Measurement and Instrumentation Principles" by Alan S. Morris
- 5. "Introduction to Mechatronics and Measurement Systems" by David G. Alciatore and Michael B. Histand
- 6. "Principles of Measurement Systems" by John P. Bentley
- 7. "Sensors and Transducers" by D. Patranabis

Department of Electronics and Communication Engineering

Program: B. Tech. in ECE (BEC)	Year, Semester: 4th Yr., 7rd Sem.	
Course Title: Power Electronics	Subject Code: TIU-UEC-E40#	
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3	

COURSE OBJECTIVE :

Enable the student to:

- 1. Understand the characteristics and applications of power semiconductor devices.
- 2. Analyze and design power electronic converters.
- 3. Apply power electronics techniques in real-world applications.

COURSE OUTCOME :

CO-1:	Understand the characteristics and operation of semiconductor power devices	K2
CO-2:	Analyze the performance of single-phase controlled rectifiers	K4
CO-3:	Design and evaluate chopper circuits	К3

CO-4: Understand the principles of single-phase inverters		K2
CO-5: Explore switching power supplies and AC-AC converters		K4
CO-6:	CO-5:Explore switching power supplies and AC-AC convertersCO-6:Apply power electronics techniques to real-world applications	

MODULE 1:	Characteristics of Semiconductor Power Devices:	8 Hours
	OSFET and IGBT-Treatment should consist of structure, Characterist	
ratings, protections and thermal considerations. Brief introduction to power devices viz. TRIAC, MOS		
	r (MCT), Power Integrated Circuit (PIC) (Smart Power), Trig	
	nubber circuits for thyristor, power MOSFETs and IGBTs (discrete a	
	very and schottky diodes as freewheeling and feedback diode	
	<i>e</i>	
MODULE 2:	Controlled Rectifiers: Single phase	8 Hours
Study of semi and t	full bridge converters for R, RL, RLE and level loads. Analysis of loa	ad voltage and
	ations of load form factor and ripple factor, Effect of source impedance	
	sis of input current to derive input supply power factor, displacement	
harmonic factor		
MODULE 3:	Choppers:	8 Hours
Quadrant operations	s of Type A, Type B, Type C, Type D and type E choppers, Control	techniques for
choppers - TRC and	I CLC, Detailed analysis of Type A chopper. Step up chopper. Multipha	ase Chopper.
MODULE 4:	Single-phase inverters	8 Hours
Principle of operation	on of full bridge square wave, quasi-square wave, PWM inverters and	comparison of
Principle of operation		comparison of
Principle of operation their performance. It voltage and harmon	on of full bridge square wave, quasi-square wave, PWM inverters and Driver circuits for above inverters and mathematical analysis of output (nic control at output of inverter (Fourier analysis of output voltage).	comparison of Fourier series)
Principle of operation their performance. It voltage and harmon	on of full bridge square wave, quasi-square wave, PWM inverters and Driver circuits for above inverters and mathematical analysis of output (comparison of Fourier series)
Principle of operation their performance. In voltage and harmon output of inverters, in	on of full bridge square wave, quasi-square wave, PWM inverters and Driver circuits for above inverters and mathematical analysis of output (nic control at output of inverter (Fourier analysis of output voltage). Single phase current source inverter	comparison of Fourier series) Filters at the
Principle of operation their performance. In voltage and harmon output of inverters, 3 MODULE 5:	on of full bridge square wave, quasi-square wave, PWM inverters and Driver circuits for above inverters and mathematical analysis of output (nic control at output of inverter (Fourier analysis of output voltage). Single phase current source inverter Switching Power Supplies	comparison of Fourier series)
Principle of operation their performance. In voltage and harmon output of inverters, 3 MODULE 5:	on of full bridge square wave, quasi-square wave, PWM inverters and Driver circuits for above inverters and mathematical analysis of output (nic control at output of inverter (Fourier analysis of output voltage). Single phase current source inverter	comparison of Fourier series) Filters at the
Principle of operation their performance. It voltage and harmon output of inverters, the MODULE 5: Integer cycle contro	on of full bridge square wave, quasi-square wave, PWM inverters and Driver circuits for above inverters and mathematical analysis of output (nic control at output of inverter (Fourier analysis of output voltage). Single phase current source inverter Switching Power Supplies	comparison of Fourier series) Filters at the 8 Hours
Principle of operation their performance. It voltage and harmon output of inverters, it MODULE 5: Integer cycle controc MODULE 5:	on of full bridge square wave, quasi-square wave, PWM inverters and Driver circuits for above inverters and mathematical analysis of output (nic control at output of inverter (Fourier analysis of output voltage). Single phase current source inverter Switching Power Supplies I and other AC to AC converters, Cycloconverters	comparison of Fourier series) Filters at the 8 Hours 8 Hours
Principle of operation their performance. It voltage and harmon output of inverters, it MODULE 5: Integer cycle contro MODULE 5: Analysis of fly ba	on of full bridge square wave, quasi-square wave, PWM inverters and Driver circuits for above inverters and mathematical analysis of output (nic control at output of inverter (Fourier analysis of output voltage). Single phase current source inverter Switching Power Supplies I and other AC to AC converters, Cycloconverters ck, forward converters for SMPS, Resonant converters - need, co	comparison of Fourier series) Filters at the 8 Hours 8 Hours oncept of soft
Principle of operation their performance. If voltage and harmon output of inverters, if MODULE 5: Integer cycle contro MODULE 5: Analysis of fly ba switching, switching	on of full bridge square wave, quasi-square wave, PWM inverters and Driver circuits for above inverters and mathematical analysis of output (nic control at output of inverter (Fourier analysis of output voltage). Single phase current source inverter Switching Power Supplies I and other AC to AC converters, Cycloconverters	comparison of Fourier series) Filters at the 8 Hours 8 Hours oncept of soft
Principle of operation their performance. If voltage and harmon output of inverters, if MODULE 5: Integer cycle contro MODULE 5: Analysis of fly ba switching, switching converter.	Definition Sector Deriver circuits for above inverters and mathematical analysis of output (nic control at output of inverter (Fourier analysis of output voltage). Single phase current source inverter Switching Power Supplies 1 and other AC to AC converters, Cycloconverters ck, forward converters for SMPS, Resonant converters - need, constrained and SOAR, Load resonant converter - series loaded half be a series for series for series loaded half be a series for series loaded half be a series for series loaded half be a series loa	comparison of Fourier series) Filters at the 8 Hours 8 Hours oncept of soft oridge DC-DC
Principle of operation their performance. It voltage and harmon output of inverters, it MODULE 5: Integer cycle control MODULE 5: Analysis of fly bas switching, switching, converter. Applications: Power	on of full bridge square wave, quasi-square wave, PWM inverters and Driver circuits for above inverters and mathematical analysis of output (nic control at output of inverter (Fourier analysis of output voltage). Single phase current source inverter Switching Power Supplies I and other AC to AC converters, Cycloconverters ck, forward converters for SMPS, Resonant converters - need, co g trajectory and SOAR, Load resonant converter - series loaded half b r line disturbances, EMI/EMC, power conditioners. Block diagram and	comparison of Fourier series) Filters at the 8 Hours 8 Hours oncept of soft pridge DC-DC
Principle of operation their performance. It voltage and harmon output of inverters, it MODULE 5: Integer cycle contro MODULE 5: Analysis of fly bas switching, switching converter. Applications: Power of UPS, salient feat	Definition For a full bridge square wave, quasi-square wave, PWM inverters and Driver circuits for above inverters and mathematical analysis of output (nic control at output of inverter (Fourier analysis of output voltage). Single phase current source inverter Switching Power Supplies 1 and other AC to AC converters, Cycloconverters ck, forward converters for SMPS, Resonant converters - need, core trajectory and SOAR, Load resonant converter - series loaded half to the function of battery and charger ratings, sizing of UF	comparison of Fourier series) Filters at the 8 Hours 8 Hours oncept of soft pridge DC-DC
Principle of operation their performance. It voltage and harmon output of inverters, it MODULE 5: Integer cycle contro MODULE 5: Analysis of fly bas switching, switching converter. Applications: Power of UPS, salient feat	on of full bridge square wave, quasi-square wave, PWM inverters and Driver circuits for above inverters and mathematical analysis of output (nic control at output of inverter (Fourier analysis of output voltage). Single phase current source inverter Switching Power Supplies 1 and other AC to AC converters, Cycloconverters ck, forward converters for SMPS, Resonant converters - need, cog trajectory and SOAR, Load resonant converter - series loaded half to the series of UPS, selection of battery and charger ratings, sizing of UPS, rive. P M Stepper motor Drive	comparison of Fourier series) Filters at the 8 Hours 8 Hours oncept of soft pridge DC-DC

Books:

- 1. 1. Muhammad H. Rashid, "Power electronics", Prentice Hall of India.
- 2. 2. A Chakrabarti, "Fundamentals Of Power Electronics and Drives", Dhanpat Rai & Co.
- 3. 3. Ned Mohan, Robbins, "Power electronics", edition III, John Wiley and sons.
- 4. 4. P. C. Sen., "Modern Power Electronics", edition II, Chand & Co.
- 5. 5. V. R.Moorthi, "Power Electronics", Oxford University Press.

- 6. 6. Cyril W., Lander," Power Electronics", edition III, McGraw Hill.
- 7. E. C. Jordan & K. G. Balmain, "Electromagnetic Fields and Radiating Systems", McGraw Hill

Department of Electronics and (Communication Engineering
--	---------------------------

Program: B. Tech. in ECE (BEC)	Year, Semester: 4th Yr., 7rd Sem.
Course Title:Adaptive Signal Processing (Elective – III)	Subject Code: TIU-UEC-E407B
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. To introduce the fundamental concepts of adaptive filtering.
- 2. Understand the LMS algorithm (real and complex) and analyze its convergence.
- 3. Apply vector space concepts to adaptive filtering techniques.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the fundamentals of adaptive filtering and estimation.	K2
CO-2:	CO-2: Analyze the Wiener filter and LMS algorithm	
CO-3:	Explore LMS algorithm variants and frequency domain adaptive filters	К3
CO-4:	Apply vector space concepts to stochastic adaptive filtering	K4
CO-5:	Develop and analyze recursive least squares (RLS) filters	K4
CO-6:	Apply adaptive filtering techniques to real-world problems	K2

MODULE 1:		8 Hours
General concept of adaptive filtering and estimation, applications and motivation, Review of probability random variables and stationary random processes, Correlation structures, properties of correlation matrices		1
MODULE 2:		8 Hours
	r) filter, Method of steepest descent, extension to complex valuex), convergence analysis, weight error correlation matrix, excessent	
MODULE 3:		8 Hours

Variants of the LMS algorithm: the sign LMS family, normalized LMS algorithm, block LMS and FFT based realization, frequency domain adaptive filters, Sub-band adaptive filtering. Signal space concepts introduction to finite dimensional vector space theory, subspace, basis, dimension, linear operators, rank and nullity, inner product space, orthogonality, Gram-Schmidt orthogonalization, concepts of orthogonal projection, orthogonal decomposition of vector spaces.

MODULE 4:

Vector space of random variables, correlation as inner product, forward and backward projections, Stochastic lattice filters, recursive updating of forward and backward prediction errors, relationship with AR modeling, joint process estimator, gradient adaptive lattice.

MODULE 5:

Introduction to recursive least squares (RLS), vector space formulation of RLS estimation, pseudoinverse of a matrix, time updating of inner products, development of RLS lattice filters, RLS transversal adaptive filters. Advanced topics: affine projection and subspace based adaptive filters, partial update algorithms, QR decomposition and systolic array **TOTAL LECTURES** 40 Hours**

Books:

1. S. Haykin, "Adaptive Filter Theory", Prentice Hall, 1986.

2. C. Widrow and S. D. Stearns, "Adaptive Signal Processing", Prentice Hall, 1984.

Department of Electronics and Communication Engineering

Program: B.Tech in Electronics &Communication Engineering	Year, Semester: Final YR. 7 th SEMESTER
Course Title:Embedded System	Subject Code: TIU-UEC-S40#
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Course Objective :

The **course objective** is to provide students with foundational knowledge and practical skills in embedded systems design. The course covers the architecture of microcontrollers, interfacing techniques, real-time programming, and the use of embedded software and hardware tools. Students will learn to design, develop, and troubleshoot embedded systems with a focus on performance, power efficiency, and application-specific requirements

8 Hours

8 Hours

CO-1:	Understand the basic concepts of embedded systems, including architecture, microcontroller cores, and memory types.	K1
CO-2:	Apply knowledge of interfacing techniques between analog and digital components in embedded systems.	К3
CO-3:	Develop real-time applications and software for embedded systems using real-time programming languages.	K4
CO-4:	Design and interface embedded systems with external peripherals and user interfaces.	K4
CO-5:	Evaluate and optimize the design of embedded systems based on performance, power, and cost tradeoffs.	К3
CO-6:	Use embedded system design tools and follow a structured development process for building embedded applications.	К2

MODULE 1:	Introduction to Embedded Systems and Microcontroller	9 Hours
Introduction to	Embedded Systems	
CharactExample	ion and concepts of embedded systems teristics of embedded systems les of embedded systems (Automotive, Industrial, Consumer Electronics) ne systems	
Microcontrolle	er Architecture	
IntroduEmbedoMemor	nicrocontroller architecture and core features ction to popular microcontroller cores (ARM, PIC, AVR) ded memories (ROM, RAM, Flash, EEPROM) y management and types of memory in embedded systems	
ADC anSignal of	tween Analog and Digital Blocks nd DAC operation conditioning techniques (amplification, filtering, noise reduction) ction to digital signal processing (DSP) in embedded systems	
MODULE 2:	Subsystem Interfacing, External System Communication, and User Interfaces	9 Hours

Subsystem Interfacing

- Interfacing sensors and actuators with microcontrollers
- Communication protocols: I2C, SPI, UART
- Digital and analog sensors interfacing

Interfacing with External Systems

- Wired communication (RS232, USB)
- Wireless communication (Bluetooth, Wi-Fi)
- Data transmission to/from external systems (PCs, other embedded devices)

User Interface Design

- Human-machine interface (HMI) principles
- Input/output interfacing (buttons, LEDs, touchscreens)
- Display interfacing (LCD, OLED)

MODULE 3: Design Considerations and Real-Time Software for Embedded Systems 9 Hours

Design Considerations

- Design tradeoffs: Performance vs power consumption, cost vs complexity
- Thermal considerations and process compatibility
- Reliability and durability in various environments (industrial, automotive, medical)

Real-Time Systems

- Characteristics of real-time systems
- Real-time programming languages: C, C++
- Interrupt handling and scheduling in real-time applications

Real-Time Operating Systems (RTOS)

- Introduction to RTOS
- Task scheduling and time management
- Resource management and synchronization in embedded systems
- Application of RTOS (FreeRTOS, VxWorks)

MODULE 4:	Embedded	System	Design	Tools,	Development	Process,	and	9 Hours
	Applications	5						

Embedded System Design Tools

- Hardware Description Languages (HDLs): Verilog, VHDL
- Simulation tools and debugging techniques (Keil, MPLAB, Proteus)
- IDEs and compilers for embedded systems (IAR Embedded Workbench, GCC)

Embedded System Development Process

- Software development life cycle for embedded systems
- Verification, validation, and testing techniques
- Prototyping and iterative design

Emerging Applications of Embedded Systems

- Applications in automotive, robotics, and IoT
- Medical and industrial embedded systems
- Future trends in embedded systems (AI, 5G, etc.)

Textbooks

- 1. "Embedded Systems: Introduction to ARM Cortex-M Microcontrollers" by Jonathan W. Valvano
- 2. "Embedded Systems: Architecture, Programming and Design" by Raj Kamal
- **3.** "Embedded Systems Design: A Unified Hardware/Software Introduction" by Frank Vahid and Tony Givargis
- 4. "Real-Time Systems: Design and Analysis" by Phillip A. Laplante
- 5. "Embedded Systems: A Contemporary Design Tool" by James K. Peckol

Reference Books

- 1. "Embedded Systems: Principles and Practice" by David E. Simon
- 2. "The Art of Designing Embedded Systems" by Jack Ganssle
- 3. "Programming Embedded Systems in C and C++" by Michael Barr and Anthony Massa
- 4. "Principles of Embedded Systems Design" by Steve Heath
- **5.** "Introduction to Mechatronics and Measurement Systems" by David G. Alciatore and Michael B. Histand

Department of Electronics and Communication Engineering

Program: B.Tech. in ECE	Year, Semester: 4 th , 7th.
Course Title: Object-Oriented Programming	Subject Code:TIU-UES-E40#
Contact Hours/Week: 2–0–0	Credit: 2

COURSE OBJECTIVE:

Enable the student to:

- 1. Be introduced with the fundamentals of Object-Oriented Programming (OOP) using Java.
- 2. Learn about language specific features of the Java programming language.
- 3. Be introduced with Python programming for data analysis, machine learning, and data visualization.
- 4. Be equipped with advanced skills in machine learning and computer vision using Python.

COURSE OUTCOME:

On completion of the course, the student will be able:

CO-1	Understand fundamental concepts of object oriented programming using Java	K2
CO-2	Apply the concepts of execution handling, Java collection framework and File I/O operation of Java.	К3
CO-3	Interpret multithread and concurrency, Java networking and UI design features of Java.	K3
CO-4	Analyze python programming for data analysis, machine learning, and data visualization.	K4
CO-5	Apply the knowledge of python programming for advanced machine learning techniques.	K3
CO-6	Demonstrate computer vision with mediapipe based on the knowledge of python programming	К3

MODULE 1: Object-Oriented Programming with Java - Basics	6 Hours			
Introduction to OOP Concepts: Classes and Objects, Encapsulation and Abstraction, Inheritance,				
Polymorphism				
Java Basics: Setting up Java Environment, JVM - JRE, Code compilation and execution	, Basic Syntax,			
Data Types, 'this'/ 'new' keyword, memory-management, garbage collector, Static and F	inal Keywords,			
Control Structures (if-else, switch-cases, loops).				
Java Classes and Objects: Creating Classes and Objects, Constructors, Method Overloading	z.			
Inheritance and Polymorphism: Super-classes and Subclasses, Overriding Methods, Abstr				
Interfaces, Inner Classes, Anonymous Classes				
MODULE 2: Language specific features of Java	6 Hours			
Execution Handling: Try-Catch-Finally Block, Exception class, Inbuilt exception, Custom Exceptions				
Java Collections Framework: List, Set, Map Interfaces, ArrayList, HashSet, HashMap, Implementations				
File I/O in Java:Reading from and Writing to Files				
Multithreading and Concurrency:				
Creating Threads: Synchronization, Deadlocks				
Java Networking: Working with Sockets, Client-Server Communication, RMI				
Java Database Connectivity (JDBC): Connecting to Databases, Executing SQL Queries				
UI Design: Java Swing, JavaFX				
Testing: Unit Testing with JUnit				
MODULE 3: Python Programming for Data Analysis and Machine Learning	6 Hours			

Python Basics:Python Syntax, Data Structures (Lists, Tuples, Dictionaries), Functions and Modules Data Analysis with Pandas:DataFrames and Series, Data Cleaning and Preparation, Aggregation and Grouping.

Numerical Computations with NumPy:Arrays and Matrices, Mathematical Operations

Data Visualization with Matplotlib:Basic Plotting, Customizing Plots, Subplots and Layouts.

Introduction to Machine Learning with Scikit-Learn:Supervised and Unsupervised Learning, Model Training and Evaluation, Feature Engineering

MODULE 4:Advanced Python for Machine Learning and Computer Vision6 Hours

Advanced Machine Learning with Scikit-Learn:Hyperparameter Tuning, Ensemble Methods Deep Learning with YOLO (You Only Look Once):Introduction to YOLO, Object Detection, Implementing YOLO with Python

Computer Vision with MediaPipe:Overview of MediaPipe, Hand and Face Detection Time Series Analysis and Forecasting:Time Series Data Handling, ARIMA and LSTM Models

TOTAL LAB HOURS

36 Hours

Books:

James Gosling, The Java Programming Language, 3rd Edison, Pearson Education

Mark Lutz, Learning Python: Powerful Object-Oriented Programming, 5/E Paperback, O'Reilly

Supplementary Reading:

Dr. R. Nageswara Rao, Machine Learning in Data Science Using Python, Dreamtech Press

James Gosling, The Java Language Specification (Java Series), 1st edition, Addison Wesley

Department of Electronics and Communication Engineering

Program: B. Tech. in ECE (BEC)	Year, Semester: 4th Yr., 7rd Sem.	
Course Title:Artificial Intelligence and Soft Computing	Subject Code: TIU-UCS-E427	
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3	

COURSE OBJECTIVE:

Enable the student to:

- 1. To introduce the fundamental concepts of Artificial Intelligence
- 2. Understand the Fuzzy sets and applications.
- 3. Apply computing techniques for AI optimization

COURSE OUTCOME:

CO-1:	Understand the various searching techniques, constraint satisfaction problem and example problems - game playing techniques.	K2
CO-2:	Apply these techniques in applications which involve perception, reasoning and learning.	K4
CO-3:	Understand Fuzzy sets and applications.	K3
CO-4:	Understand different neural network algorithms.	K4
CO-5:	Develop and evaluate neural network architectures	K4
CO-6:	Apply evolutionary computing techniques for AI optimization	K2

MODULE 1:	Introduction	8 Hours		
Agents - Problem formulation - uninformed search strategies - heuristics - informed search strategies -				
constraint satisfaction Logical agents – propositional logic – inferences – first-order logic – inferences in				
first order logic - forw	vard chaining - backward chaining - unification - resolution plann	ing with state-		
space search - partial-o	rder planning – planning graphs – planning and acting in the real w	orld.		
MODULE 2:	Soft Computing	8 Hours		
Fuzzy Sets and Applica	itions:			
	perations, and properties.			
	on, types of fuzzy sets, membership functions, some definition	ns, operations,		
examples, measures of	fuzziness.			
	r, Mamdani approach, Takagi-Sugeno approach, examples, ad	dvantages and		
disadvantages of FLC.				
Fuzzy clustering, metho	ods, Fuzzy C-Means Clustering and Entropy based clustering, exam	ples.		
MODULE 3:	Neural networks and Applications	8 Hours		
Neurons, transfer functions, layers of neurons, static & dynamic neural networks, types of training of				
neural networks.				
		-		
MODULE 4:	Multi-Layer Feed Forward Neural Network,	8 Hours		
	forward computation and training using Back-propagation algorithm, example, steps to be followed for			
designing a suitable neural network, advantages and disadvantages of NN.				
		0.77		
MODULE 5:	Radial Basis Function Network,	8 Hours		
	and training using Back-propagation algorithm.Introduction to S	Self-organizing		
Map, Recurrent Neural				
Evolutionary Computation techniques and Applications:				
Deficiencies of Classical traditional techniques, Algorithmic descriptions of a few evolutionary				
algorithms like Genetic Algorithm, Particle Swarm Optimization. TOTAL LECTURES 40 Hours**				

TOTAL LECTURES

Books:

1. A. Konar, "Artificial Intelligence and Soft Computing", CRC Press

2. S. Haykin, "Neural Networks", Pearson

3. Ritch & Knight, "Artificial Intelligence", Tata McGraw Hill
4. D. K. Pratihar, "Soft Computing, Fundamentals and Applications", Narosa

Department of Electronics & Communication Engineering

Program: B.Tech. in ECE	Year, Semester: 4 th , 7 th .
Course Title:RF & Microwave Engineering Lab	Subject Code:TIU-UEC-L405
Contact Hours/Week: 0-0-3	Credit: 1.5

COURSE OBJECTIVE:

Enable the student to:

- 6. Develop a fundamental understanding of RF and microwave engineering principles.
- 7. Equip with practical skills in RF and microwave measurement techniques.
- 8. Analyze and design RF and microwave circuits for real-world applications.
- 9. Explore the applications of RF and microwave technology in communication and radar systems.

COURSE OUTCOME:

On completion of the course, the student will be able:

CO-1	Understand Fundamental Concepts:Describe the principles and working of RF and microwave components, including transmission lines, waveguides, and antennas.	K2
CO-2	Apply Theoretical Knowledge: Perform experiments to measure and analyze key parameters such as VSWR, reflection coefficient, and impedance matching in RF circuits.	K3
CO-3	Analyze System Performance: Interpret S-parameters and other performance characteristics of microwave devices such as circulators, directional couplers, and filters.	K4
CO-4	Design and Implement RF Circuits: Develop and test simple RF/microwave circuits using simulation and hardware tools, ensuring optimal performance.	K3
CO-5	Evaluate Measurement Techniques: Compare different microwave measurement techniques using network analyzers, spectrum analyzers, and power meters to determine system efficiency.	K4
CO-6	Demonstrate Problem-Solving Skills: Troubleshoot and optimize microwave circuits and systems based on experimental data and theoretical calculations.	K4

MODULE 1:	MICROWAVE SOURCES AND SEMICONDUCTOR DEVICES	15 Hours			
Study of Reflex	Study of Reflex Klystron characteristics, Study of Gunn diode characteristics				
MODULE 2:	MICROWAVE MEASUREMENT TECHNIQUES	15 Hours			
Measurement of frequency and wavelength of a microwave signal, Measurement of VSWR and reflection					
coefficient of a standing wave pattern in a waveguide					

MODULE 3:	MICROWAVE PASSIVE COMPONENTS	12 Hours
Study of Directional Coupler characteristics, Measurement of Unknown Impedance		
MODULE 4:	ANTENNAS AND RADIATION PATTERNS	6 Hours
Measurement of Radiation Pattern of Horn Antenna		
TOTAL LAB HOURS 48 Hours		

Books:

- 1. D. M. Pozar, "Microwave Engineering", Wiley.
- 2. R.E. Collin, "Microwave Circuits", McGraw Hill
- 3. S. Y. Liao, "Microwave Devices & Circuits", Prentice Hall.
- 4. K. C. Gupta, "Microwaves", New Age.
- 5. M. Mitra, "Microwave Engineering", Dhanpat Rai.
- 6. G. S. N. Raju, "Microwave Engineering", I. K. International.

Department of Electronics & Communication Engineering

Program: B. Tech. in ECE	Year, Semester: 4 th Yr., 7th Sem.
Course Title: Project 1	Subject Code: TIU- UEC- P401
Contact Hours/Week: 0–0–4 (L–T–P)	Credit: 4

Course Objectives:

- To develop problem-solving skills through research and practical implementation.
- To enhance technical knowledge in real-world applications.
- To improve project management, teamwork, and communication skills.
- To document and present the project findings effectively.

COURSE OUTCOME:

CO-1	Identify and define an engineering problem through literature survey and industry requirements.	K2
CO-2	Formulate project objectives, methodology, and work plan.	K3
CO-3	Design, develop, and implement innovative solutions using appropriate tools and techniques.	К3
CO-4	Analyze and evaluate project outcomes using experimental results, simulations, or prototypes.	K4
CO-5	Prepare technical documentation, research reports, and project presentations.	К3
CO-6	Demonstrate teamwork, ethical practices, and project management skills.	K2

Phase 1: Project Proposal & Planning	
Phase 2: System Design & Development	
Phase 3: Implementation & Experimentation	
Phase 4: Report Writing & Final Presentation	