

Department of Electronics and Communication Engineering

Sixth Semester

Program: B.Tech. in ECE	Year, Semester: 3 rd , 6th.
Course Title: Antenna Lab	Subject Code:TIU-UEC-L309
Contact Hours/Week: 0-0-3	Credit: 1.5

COURSE OBJECTIVE:

Enable the student to:

- 1. To provide hands-on experience in testing different types of antennas for various applications, allowing students to apply theoretical concepts in practical scenarios.
- 2. To develop proficiency in using measurement equipment to analyze antenna parameters such as radiation patterns, gain, enabling students to interpret results and optimize antenna performance.

COURSE OUTCOME:

On completion of the course, the student will be able:

CO-1	Interpret radiation patterns of different types of antennas using Antenna trainer kit.	K3
CO-2	Analyze antenna radiation patterns along with beamwidth calculation	K4
CO-3	Test a range of antennas like dipole antennas, microstrip antennas etc. demonstrating hands-on skills	K3
CO-4	Implement comprehensive laboratory reports that include procedure, measurement data, and result analysis	K3
CO-5	Understand the performance and design parameters of antennas in practical applications.	K2
CO-6	Compare the performance of different antennas for various communication systems.	K4

COURSE CONTENT:

beamwidth, gair	n etc.	
MODULE 3:	SLOT ANTENNA	6 Hours
Testing of the si	lot antenna. Measurement of key parameters such as radiation pattern, be	eamwidth, gain
etc.		
MODULE 4:	CIRCULAR LOOP ANTENNA	6 Hours
Testing of the	circular slot antenna. Measurement of key parameters such as rad	iation pattern,
beamwidth, gair	i etc.	
MODULE 5:	YAGI UDA ANTENNA	6 Hours
Testing of the yagiuda antenna. Measurement of key parameters such as radiation pattern, beamwidth, gain etc.		
MODULE 6:	HELICAL ANTENNA	6 Hours
Testing of the h gain etc.	nelical antenna. Measurement of key parameters such as radiation pattern	n, beamwidth,

Testing of the half-wave folded dipole antenna. Measurement of key parameters such as radiation pattern,

MODULE 1: HALF-WAVE FOLDED DIPOLE ANTENNA

beamwidth, gain etc.

MODULE 2: MICROSTRIP PATCH ANTENNA

Testing of the microstrip patch antenna. Measurement of key parameters such as radiation pattern,

ľ

I

ľ

Ι

TOTAL LAB HOURS

Books:

- 1. "Introduction to Electrodynamics" by David J. Griffiths
- 2. "Antenna Theory: Analysis and Design" by Constantine A. Balanis
- 3. "Electromagnetic Waves and Antennas" by Sophocles J. Orfanidis
- 4. "Microwave Engineering" by David M. Pozar
- 5. "Electromagnetic Field Theory Fundamentals" by Bhag Guru and HüseyinHiziroglu

Department of Electronics & Communication Engineering

Program: B.Tech. in ECE	Year, Semester: 3r ^d , 6th
Course Title: Analog Communication Laboratory	Subject Code: TIU-UEC-L311
Contact Hours/Week: 0-0-3	Credit: 1.5

COURSE OBJECTIVE:

6 Hours

6 Hours

36 Hours

Enable the student to:

- 1. Student should understand and develop fundamentalunderstanding of communication systems.
- 2. To learn basic concepts of analog communication systems.
- 3. Understands the comparison of different analog and pulse modulation schemes.
- 4. To illustrate the practical implementation of communication techniques for sending information from transmitter to receiver.
- 5. To develop MATLAB programming skills to simulate concept of communication
- 6. systems.

COURSE OUTCOME:

On completion of the course, the student will be able:

CO-1	Ability to Understand the operations of analog and pulse modulation & demodulation techniques.	K2
CO-2	Apply appropriate modulation and demodulation techniques (e.g., AM, FM, DSB-SC, SSB-SC) to simulate real-world communication systems in the laboratory setting.	K3
CO-3	Acquire knowledge on MATLAB or any other simulation programming skills to Create & Simulate analog and pulse modulation and demodulation techniques.	K3
CO-4	Evaluate & Design of communication circuits such as AM, SSB-SC, DSB-SC, FM, PAM, PWM & PPM.	K4
CO-5	Analyze various aspects of analog and pulse communications modulation & demodulation techniques, sampling theorem verification and study of spectrum analyzer, frequency synthesizer, AGC &PLL.	K4
CO-6	Synthesize a comprehensive solution for a real-world analog communication problem by integrating pre-emphasis, de-emphasis, phase-locked loops (PLLs), and modulation techniques.	K5

COURSE CONTENT:

MODULE 1:	Amplitude Modulation	12 Hours
Study the opera	tion, waveform analysis, and efficiency of a half-wave rectifier circuit.	
MODULE 2:	Angle Modulation	9 Hours
Analyze the per	formance, output waveform, and efficiency of a full-wave rectifier circuit.	
MODULE 3:	Pre-emphasis, De-emphasis, and PLL Systems	9 Hours
Examine the vo	ltage-current characteristics of a Light Emitting Diode (LED) under differe	nt conditions.
MODULE 4:	Pulse Modulation Techniques	12 Hours
Study the input	and output characteristics of a Bipolar Junction Transistor (BJT) in diffe	erent regions of
operation.		-
TOTAL LAB	HOURS	42 Hours

Program: B. Tech. in ECE	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Mobile Communication	Subject Code: TIU-UEC-E302
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Department of Electronics and Communication Engineering

COURSE OBJECTIVE :

Course Objectives:

Enable the student to:

- 1. To understand the basic structural layout of a mobile communication system.
- 2. To gain a first hand knowledge of the propagation mechanism involved in in these. Moreover based on the propagation mechanism and the physical and demographic layout of the area where the mobile communication system is planned and laid out.
- 3. knowledge of fading mechanism in different situations can be gained .
- 4. Knowledge about the multiple access schemes used in transmission from both base station and mobile station and the receiver structure in both the cases also can be gained .
- 5. Knowledge about the actual mobile communication system like GSM ,GPRS , IS-95 etc.in different generations also can be acquired.

COURSE OUTCOME :

On completion of the course, the student will be able to:

COs	Outcomes	Level
7.	Understand Mobile Communication Fundamentals – Explain the principles of mobile communication, including frequency reuse, handoff strategies, and network architecture.	K2
8.	Analyze Wireless Propagation and Channel Characteristics – Describe signal propagation, path loss models, fading, and interference in mobile environments.	K2
9.	Explore Mobile Network Technologies – Compare and contrast different generations of mobile networks (2G, 3G, 4G, 5G) and their protocols.	К3
10.	Evaluate Modulation and Multiple Access Techniques – Understand modulation schemes (AM, FM, QPSK) and multiple access techniques like TDMA, FDMA, CDMA, and OFDMA.	К3

11.	Design and Optimize Mobile Communication Systems – Apply network planning techniques, resource allocation strategies, and power management principles to enhance mobile communication.	K4
12.	Understand Emerging Trends in Mobile Communication – Discuss advancements such as IoT, 5G, mobile edge computing, and security challenges in wireless networks.	K4

COURSE CONTENT :

MODULE 1:		6Hours
Cellular conce	pts- Cell structure, frequency reuse, cell splitting, channel assign	nent, handoff,
interference, cap	pacity, power control; Wireless Standards: Overview of 2G and 3G cellular	standards.
MODULE 2:		12 Hours
Signal propagat	ion-Propagation mechanism- reflection, refraction, diffraction and scatter	ing, large scale
signal propaga	ion and lognormal shadowing. Fading channels-Multipath and smal	l-scale fading-
Doppler shift, s	statistical multipath channel models, narrowband and wideband fading	models, power
delay profile, av	rerage and rms delay spread, coherence bandwidth and coherence time, flat	t and frequency
selective fading	slow and fast fading, average fade duration and level crossing rate.	
MODULE 3:		4 Hours
Capacity of flat	and frequency selective channels. Antennas- Antennas for mobile term	inal- monopole
antennas, PIFA,	base station antennas and arrays.	-
MODULE 4:		6Hours
Multiple access	schemes_FDMA_TDMA_CDMA_and SDMA_Modulation schemes_ BP	SK OPSK and

Multiple access schemes-FDMA, TDMA, CDMA and SDMA. Modulation schemes- BPSK, QPSK and variants, QAM, MSK and GMSK, multicarrier modulation, OFDM.

MODULE 5:

Receiver structure- Diversity receivers- selection and MRC receivers, RAKE receiver, equalization: linear-ZFE and adaptive, DFE. Transmit diversity-Altamonte scheme.

6Hours

MODULE 6:

6 Hours MIMO and space time signal processing, spatial multiplexing, diversity/multiplexing tradeoff. Performance measures- Outage, average snr, average symbol/bit error rate. System examples- GSM, EDGE, GPRS, IS-95, CDMA 2000 and WCDMA. TOTAL LECTURES 40 Hours

Books:

Text Books:

- 1. T. S. Rappaport, "Wireless Communications Principles and Practice", 2nd edition, Prentice Hall, 2002
- 2. G. L. Stüber, "Principles of Mobile Communications", 3rd edition, Springer, 2013.
- 3. M. K. Simon and M. -S. Alouni, "Digital Communications over Fading Channels", Wiley, 2002.
- 4. M. Plätzold, "Mobile Fading Channels", Wiley, 2002.
- 5. A. J. Goldsmith, "Wireless Communications", Cambridge, 2005

Department of Electronics and Communication Engineering

Program: B. Tech. in ECE (BEC)	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Information Theory	Subject Code: TIU-UEC-T302B
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE :

Enable the student to:

- 1. understand the concepts of fundamental limit of information transfer through communication channel
- 2. understand source coding techniques for data compression
- 3. understand how probabilistic nature of communication channel and noise impacts data transmission
- 4. understand channel coding techniques and their capabilities

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the concepts of information and entropy and apply these concepts to find out entropy of different probability distributions	K3
CO-2:	Understand the concepts of mutual information	K2
CO-3:	Understand the concepts of source coding	K2
CO-4:	Understand the concepts of channel capacity and evaluate channel capacity of different channels.	K5
CO-5:	Analyze the characteristics of Gaussian channel and its capacity.	K4
CO-6:	Understand the concepts of linear block codes	K2

COURSE CONTENT :

MODULE 1:	ENTROPY AND INFORMATION	14 Hours	
Basics of infor	Basics of information theory, entropy for discrete ensembles; Shannon's noiseless coding theorem;		
Encoding of dis	crete sources		
MODULE 2:	CHANNEL CAPACITY	16 Hours	
Markov sources; Shannon's noisy coding theorem and converse for discrete channels; Calculation of			
channel capacity and bounds for discrete channels; Application to continuous channels.			

MODULE 3: | SOURCE AND CHANNEL CODING

10 Hours Techniques of coding and decoding; Huffman codes and uniquely detectable codes; Cyclic codes, convolutional arithmetic codes.

40 Hours**

TOTAL LECTURES

Books:

- 1. Elements of Information Theory, T.M. Cover and J.A. Thomas, Wiley Student Edition
- 2. Information theory, Coding and Cryptography, Ranjan Bose, TMH
- 3. Error Control Coding, Shu Lin and D J Costello Jr, Prentice Hall
- 4. Information and Coding, N Abramson, McGraw Hill.
- 5. David Mackay, "Information Theory, Interference & amp; Learning Algorithms", Cambridge University Press, 1st Edition, 2002.

Department of Electronics and Communication Engineering

Program: B. Tech. in ECE	Year, Semester: 3ed Yr., 6h Sem.
Course Title: Digital Communication	Subject Code: TIU-UEC-T312
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

COURSE OBJECTIVE :

Enable the student to:

- 5. Understand the functional block diagram of Digital communication system.
- 6. To study various source and waveform coding techniques.
- 7. To study various line coding techniques.
- 8. To study baseband transmission model of digital communication.
- 9. To study various digital modulation schemes.
- 10. To understand a mathematical model of digital communication system for bit error rate analysis.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Understand the mathematical background of digital communication Systems.	Understand
CO-2:	Understand and comparevariouswaveform coding schemes for their bandwidth and signal to noise ratio.	Understand
CO-3:	3: Understand various line coding schemes and Analyze their power spectral density.	
CO-4:	Design of optimum receiver for baseband signal reception and Analyze its performance in the presence of ISI and noise	Analyze

CO-5:	Analyze and comparedifferent digital modulation schemes for their spectral efficiency, bandwidth and bit error performance.	Analyze
CO-6:	Understand the basics of information theory and coding.	Understand

COURSE CONTENT :

MODULE 1: INFORMATION THEORY AND CODING	8 Hours	
Concepts of information and entropy, Source coding, Coding theorem, fixed length codes,		
variable length codes, Entropy coding, Shannon Fano, Huffman codes, Shannon's capaci	ty theorem.	
MODULE 2: WAVEFORM CODING AND BASEBAND SHAPING	10 Hours	
Quantization of signals, Waveform Coding techniques: PCM, DPCM, ADPCM, DM, AD	M. Line coding	
techniques: Binary and multilevel line codes, Digital signals and their spectra.	_	
MODULE 3: BASEBAND TRANSMISSION AND RECEPTION	9 Hours	
Baseband transmission, intersymbol interference, noise, eye pattern, BER analysis, Op	timum filtering,	
equalization techniques, Clock recovery.	_	
MODULE 4: DIGITAL MODULATION AND DEMODULATION	13 Hours	
Digital modulation schemes: Binary modulation schemes- ASK, PSK, FSK, DPSK; M-ary modulation		
schemes: QPSK, pi/4 QPSK, QAM: generation and demodulation schemes, carrier recovery techniques,		
BER, analysis of digital modulation systems, spectral efficiency of digital modulation schemes.		
TOTAL LECTURES	40 Hours**	

Books:

- 1. S. Haykin, "Digital Communications", John Wiley.
- 2. S. Haykin& M. Moher, "Introduction to Analog & Digital Communications", John Wiley.
- 3. S. Haykin, "Communication Systems", John Wiley.
- 4. S. Haykin, "Digital Communication Systems", John Wiley.
- 5. B. P. Lathi, "Modern Digital and Analog Communication Systems", Oxford University Press
- 6. R. Singh & S. Sapre, "Communication Systems: Analog and Digital", Tata McGraw Hill
- 7. R. N. Mutagi, "Digital Communication", Oxford

Department of Electronics and Communication Engineering

Program: B. Tech. in ECE (BEC)	Year, Semester: 3rd Yr., 6th Sem.
Course Title: Digital Signal Processing	Subject Code: TIU-UEC-T314
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 11. understand the digital signals and mathematical operations that are applicable to such signals
- 12. understand how continuous time signal from nature is handled in discrete domain
- 13. understand the characterization of response of a digital system
- 14. how the digital filterscan modify the signals and how to design such filters

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Applythe knowledge of discrete signals to represent signals mathematically in discrete time and frequency domain	K3
CO-2:	Understand the basic mathematical operations applicable to discrete signal/systems, like time shift, folding, convolution, correlation.	K2
CO-3:	Analyze the properties of LTI systems, and explain frequency response of LTI systems for discrete signal inputs	K4
CO-4:	Evaluate the importance of sampling and quantization in digital signal processing	K5
CO-5:	Understand the concepts of DFT and analyze why it is important for frequency analysis of digital filters and discrete time systems in general.	K2
CO-6:	Evaluate the role of digital filters in discrete systems and analyze the characteristics of an ideal filter and design of different types of digital filters for various applications	K5

COURSE CONTENT :

MODULE 1:INTRODUCTION17 HoursLimitation of analog signal processing, advantage of digital signal processing, different type of discrete
signal and system, concept of linearity, causality ,stability of the system, frequency domain
representation and Fourier transform.17 Hours

MODULE 2: PROCESSING OF CONTINUOUS TIME SIGNAL

5 Hours

Sampling and discrete time processing of continuous time signal, Decimation and Interpolation.

MODULE 3: DICRETE FOURIER TRANSFORM

DFT and its properties, linear filtering methods based on DFT, Filtering of long data sequence, Fast Fourier Transform algorithm using decimation in time and decimation in frequency technique.

MODULE 4: FILTER DESIGN

Design of digital IIR filter using different technique for butterworth and chebyshev filter, Design of FIR filter: different window technique and optimum approximation

- 13 Hours

6 Hours

MODULE 5: DIGITAL SIGNAL PROCESSOR

Architecture and various features of TMS/ADSP, series of digital signal processor; Instruction set and few application of TMS 320CXX.

TOTAL LECTURES

Books:

- 6. J. G. Proakis& D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms and Applications", Pearson
- 7. S. K. Mitra, "Digital Signal Processing: A Computer Based Approach", McGraw Hill
- 8. T. J. Cavicchi, "Digital Signal Processing", John Wiley
- 9. A. V. Oppenheim & R. W. Schafer, "Discrete Time Signal Processing", Prentice Hall
- 10. L. R. Rabiner & B. Gold, "Theory and Application of Digital Signal Processing", Prentice Hall
- 11. J. R. Johnson, "Introduction to Digital Signal Processing", Prentice Hall
- 12. D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss, "Digital Signal Processing", Wiley
- 13. P. Ramesh Babu, "Digital Signal Processing", Scitech
- 14. S. Salivahanan, "Digital Signal Processing", McGraw Hill
- 15. Ashok Ambardar, "Digital Signal Processing", Cengage
- 16. A. Anand Kumar, "Digital Signal Processing", Prentice Hall of India

Department of Electronics and Communication Engineering

Program: B. Tech. in ECE	Year, Semester: 3rd Yr., 6th Sem.
Course Title:Computer Networking	Subject Code: TIU-UEC-T306
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

СОВ	Objectives	
1.	Explain basic concepts such as network types, topologies, protocols, and communication models (OSI and TCP/IP).	
2.	Describe and compare networking models, routing protocols (RIP, OSPF, BGP), switching techniques, and addressing schemes (IPv4, IPv6).	
3.	Configure network devices (routers, switches, firewalls) using tools like Cisco Packet Tracer or real-world hardware.	
4.	Identify cybersecurity threats, encryption techniques, firewalls, and intrusion detection/prevention systems.	
5.	Diagnose and troubleshoot network issues using tools like Wireshark, ping, and traceroute.	

2 Hours

43 Hours**

6.	Discuss advancements in cloud networking, SDN (Software-Defined Networking), IoT
	networking.

COURSE OUTCOME:

On completion of the course, the student will be able to:

COs	Outcomes	Level
1.	Be conversant with network devices and parameters, link and port parameters. Analyze the requirements for a layered computer network and select the most appropriate network topology.	K2
2.	Understand different types of switching and random multiple access techniques.	K2
3.	Adopt static and various dynamic routing techniques as per requirement.	K3
4.	Know the header formats for various networking protocols operating in OSI Layers 2, 3 and 4. Understand IPv4 addressing techniques and Design subnets with variable subnet masks.	K3
5.	Comprehend Error control, multi-layer Flow control and Congestion control and be cognizant of various associated methodologies.	K4

COURSE CONTENT:

MODULE 1: Introduction	on to Computer Networks	10 Hours
Introduction to networks and	l layered architecture. Data communication concepts, transmiss	ion media and
topology, multiplexing.		
MODULE 2:		10 Hours
Circuit switching and pac SONET/SDH.	eket switching, data link layer, layer 2 switches and A	ΓM switches,
MODULE 3:		10 Hours
Medium access control. CSI	MA CD, TDMA, FDMA, CDMA. Network layer and addressi	ng, IP version
4 and 6.		-
MODULE 4:		10Hours
Routing algorithms.Transmi	ission layer, TCP and UDP. Congestion control techniques.	WAN, ATM.
Internetworking.Wirelesscor	nmunications.Network management and security.	
TOTAL LECTURES		40 Hours

Books:

Text Books:

1. "Computer Networks" by Andrew S. Tanenbaum et. al, Sixth Edition, Pearson

- 2. "Data Networks" by Dimitri Bertsekas and Robert Gallager, Second Edition, Pearson
- 3. "Computer Networking: A Top-down approach" by James Kurose and Keith Ross, Sixth Edition, Pearson.

Program: B. Tech. in ECE	Year, Semester: 3rd Yr., 6th Sem.
Course Title: VLSI Design	Subject Code: TIU- UEC- T310
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

Department of Electronics & Communication Engineering

COURSE OBJECTIVE :

Enable the student to:

- 1. To introduce about fundamentals of VLSI Design and understand the basic design flow.
- 2. Student should understand about fundamentals of IC Fabrication Technique.
- 3. To know about the VLSI Design Frontend and Backend process and also developed the new design.
- 4. To give understanding of various types of Low power circuit Design for a particular application.

COURSE OUTCOME :

On completion of the course, the student will be able to:

CO-1:	Ability to recognizing different VLSI design flow and Design hierarchy.	K1
CO-2:	Understand the utilization of VLSI Fabrication technique, various Logic Design in Digital domain.	K2
CO-3:	Design and analyze of Sequential Circuits, Low-power VLSI Circuits and Semiconductor Memories.	K4
CO-4:	Able to Test the circuits to clarify the fault models.	K2
CO-5:	Develop HDL-based designs and implement them on FPGA/ASIC platforms	K3
CO-6:	Apply VLSI design methodologies for real-world applications	К3

COURSE CONTENT :

MODULE 1: INTRODUCTION	6Hours
Design hierarchy, layers of abstraction, integration density and Moore's law, VLSI packaging styles, design automation principles;	design styles,
MODULE 2: Fabrication Technology	6 Hours

Basic steps of fabrication, bipolar, CMOS and Bi-CMOS fabrication processes, layout design rules; MOS and Bi-CMOS characteristics and circuits: MOS transistor characteristics, MOS switch and inverter, Bi-CMOS inverter, latch-up in CMOS inverter, super-buffers, propagation delay models, switching delay in logic circuits, CMOS analog amplifier;

MODULE 3: Logic Design

6 Hours

6 Hours

6 Hours

switch logic, gate restoring logic, various logic families and logic gates, PLA; Dynamic Circuits: Basic concept, noise considerations, charge sharing, cascading dynamic gates, domino logic, np-CMOS logic, clocking schemes;

MODULE 4: Sequential Circuits

Basic regenerative circuits, bistable circuit elements, CMOS SR latch, clocked latch and flip-flops;

MODULE 5: Low-power Circuits

low-power design through voltage scaling, estimation and optimization of switching activity, reduction of switched capacitance, adiabatic logic circuits; Subsystem Design: design of arithmetic building blocks like adders, multipliers, shifters, area- speed-power tradeoff;

MODULE 6: Semiconductor Memories

SRAM, DRAM, non-volatile memories; Bipolar ECL Inverter: Features of ECL gate, robustness and noise immunity, logic design in ECL, single- ended and differential ECL gates;

MODULE 7: Testability of VLSI

Fault models, scan-based techniques, BIST, test vector generation; Physical Design: Brief ideas on partitioning, placement, routing and compaction.

Books:

TEXT BOOKS:

- 1. S.-M. Kang and Y. Leblebici, "CMOS Digital Integrated Circuits and Design", Tata McGraw Hill
- 2. P. E. Allen and D. R. Holberg, "CMOS Analog Circuit Design", Oxford

REFERENCE BOOKS:

- 3. N. H. E. Weste and D. M. Harris, "CMOS VLSI design: A Circuits and Systems Perspective", 4th Edition, Pearson Education India, 2011.
- 4. C. Mead and L. Conway, "Introduction to VLSI Systems", Addison Wesley, 1979.
- 5. J. Rabaey, "Digital Integrated Circuits: A Design Perspective", Prentice Hall India, 1997.

6 Hours

42 Hours**

6 Hours

6. P. Douglas, "VHDL: programming by example", McGraw Hill, 2013. Robotics :Control ,Sensing , Vision and Intelligence , K.S Fu , R.C Gonzalez and C.S.G Lee , Wiley India

Department of Electronics and	Communication Engineering
--------------------------------------	----------------------------------

Program: B. Tech. in ECE	Year, Semester: 3 rd Yr., 6TH Sem
Course Title: Database Management System (DBMS)	Subject Code: TIU-UEC-S302
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

СОВ	Objectives
1.	Learn fundamental concepts of data management, including data storage, retrieval, and organization.
2.	Gain knowledge of database structures, normalization, and schema design for efficient data handling.
3.	Apply data management techniques to analyze information and support business decision- making.
4.	Use database management systems (DBMS) and query languages like SQL to manage and manipulate data effectively.

COURSE OUTCOME:

On completion of the course, the student will be able to:

COs	Outcomes	Level
1.	For a given query write relational algebra expressions for that query and optimize the developed expressions.	K2
2.	For a given specification of the requirement design the databases using E R method and normalization.	K2
3.	For a given specification construct the SQL queries for Open source and Commercial DBMS -MYSQL, ORACLE, and DB2.	К3
4.	For a given query optimize its execution using Query optimization algorithms.	К3
5.	For a given transaction-processing system, determine the transaction atomicity, consistency, isolation, and durability.	K4

6.	Implement the isolation property, including locking, time stamping	K4
	based on concurrency control and serializability of scheduling.	

COURSE CONTENT:

MODULE 1:Introduction6 HoursGeneral introduction to database systems, Concept of file System and Disadvantages, Database-DBMS
distinction, Role of DBA, Approaches to building a database, Data models, Database management
system, Three-schema architecture of a database, Data Independency, Integrity constraints.

MODULE 2: Relational Data Model:

Concept of relations, Schema-instance distinction, Keys, Referential integrity and foreign keys. Relational Algebra Operators: Selection, Projection, Union, Intersection, Set difference, Cross product, Rename, Assignment, Various types of joins, Division, Example queries. Tuple Relational Calculus, Domain Relational Calculus.

6 Hours

6 Hours

MODULE 3: | SQL

Introduction, Data definition in SQL, Table, key and foreign key definitions, Update behaviors, querying in SQL, Basic select- from- where block and its semantics, Nested queries-correlated and uncorrelated, Notion of aggregation, Aggregation functions group by and having clauses, Embedded SQL.

MODULE 4:	Database Design Concepts (part-1) - Dependencies and Normal	6 Hours
	forms	

Importance of a good schema design, Problems encountered with bad schema designs, Motivation for normal forms, dependency theory – functional dependencies, Armstrong's axioms for FD's, Closure of a set of FDs, Minimal covers, Definitions of 1NF, 2NF, 3NF and BCNF, Decompositions and desirable properties of them, Algorithms for 3NF and BCNF normalization, multi-valued dependencies and 4NF, Join dependencies and definition of 5NF, DKNF.

MODULE 5:	Database Design Concepts (part-2) -ER Model:	8 Hours	
Conceptual data	Conceptual data modelling-motivation, Entities, Entity types, Various types of attributes, Relationships,		
Relationship typ	Relationship types, E/R diagram notation, High-level conceptual modelling, ER Modelling concepts, ER		
Diagrams, Card	Diagrams, Cardinality constraints Enhanced ER Model: Higher-order relationships, Enhanced ER		
Model(EER), V	Model(EER), Weak-entity types, Subclasses and inheritance, Specialization and Generalization,		
Modelling of UNION types using categories.			
MODULE 6:	Data Storage and Indexes:	4 Hours	
File organizations, Primary, Secondary index structures, Various index structures - hash-based, Dynamic			
hashing techniqu	hashing techniques, Multi-level indexes, B+ trees.		

MODULE 7: Transaction Processing and Concurrency Control	6 Hours
--	---------

Transaction Fundamentals: OLTP environments, Concurrency issues, need for transactions, Necessary properties of transactions (ACID properties), Transaction states, serializability, Serial schedules, Conflict serializability, View serializability, Recoverable and non-recoverable schedules, Cascading rollbacks, Cascadeless schedules. Concurrency control: Serialized and non-serialized schedules, Testing for serializability, Locking, Lock compatibility matrix, Locking and serializability, Deadlocks and starvation, Two-phase locking (2PL) protocol, Conservative, strict and rigorous 2PL, 2PL with lock conversions, Timestamp-ordering based protocol, Multi-versioning protocol, Multi-granularity locking, Deadlock prevention protocols, Wait-die and wound-wait schemes, Time-out based schemes, Deadlock recovery, Nested transactions

MODULE 8:Database Recovery Techniques:3 HoursRecovery concepts, Deferred updates technique, Immediate update technique, Shadow paging

TOTAL LECTURES

45 Hours

Books:

Text Books:

- 1. Ramez Elmasri and Shamkant Navathe, Fundamentals of Database Systems, Publisher -Pearson Education, 5th Edition.
- 2. Avi Silberschatz, Henry F. Korth, S. Sudarshan, Database System Concepts, Tata McGraw Hill Education.

Reference Books:

- 1. Microsoft SQL Server 2019 documentation: Databases SQL Server | Microsoft Docs
- 2. Microsoft Azure SQL documentation: Azure SQL documentation Azure SQL | Microsoft Docs
- 3. Microsoft Azure Cosmos DB documentation: Introduction to Azure Cosmos DB |Microsoft Docs
- 4. Articles on Microsoft Azure and SQL Server: Sucharita Das, Author at SQL Server Central
- 5. Transaction Processing in SQL Server: <u>https://youtu.be/vO4OgihpAGw</u>