

Department of Electronics and Communication Engineering

Fifth Semester

Program: B.Tech in Electronics &Communication Engineering	Year, Semester: 3 rd YR. 5 th SEMESTER
Course Title:CAD for VLSI	Subject Code: TIU-UEC-S303
Contact Hours/Week: 2–0–0 (L–T–P)	Credit: 2

Course Objective:

This course provides an in-depth understanding of VLSI design methodologies, CAD tools, and automation techniques. It covers logic synthesis, simulation, and physical design automation with a focus on industry-standard EDA tools

Course Outcomes (COs)

	Explain the VLSI design flow, different types of VLSI design, and the role of	
CO-1:	CAD tools in design automation.	K2
CO 2.	Demonstrate proficiency in Hardware Description Languages (HDL) such as	K3
CO-2:	Verilog and VHDL for RTL design.	К3
	Apply logic synthesis techniques for combinational and sequential circuits using	
CO-3:	Boolean algebra and minimization methods	K4
	Analyze the principles of physical design automation, including partitioning,	
CO-4:	floor planning, placement, and routing.	K4
	Use EDA tools for simulation and verification of digital circuits at different	
CO-5:	abstraction levels.	K2
	Evaluate the efficiency of VLSI designs in terms of performance, power, and	
CO-6:	area constraints	K3

COURSE CONTENT:

MODULE 1:	Introduction to VLSI Design and CAD Tools	10 Hours
-----------	---	----------

Overview of VLSI Design: Design flow, types of VLSI design (ASIC, FPGA, Full Custom, Semi-Custom)

CAD in VLSI: Role of CAD tools, design automation, design constraints, and requirements VLSI Design Flow: System specification, RTL design, synthesis, physical design, verification EDA Tools: Overview of tools (Cadence, Synopsys, Mentor Graphics) Hierarchy in VLSI Design: Hierarchical design approach, partitioning of design tasks.

MODULE 2:	Logic Synthesis and Simulation	10 Hours
Hardware Dese	cription Languages: Verilog, VHDL, SystemVerilog; coding styles	, RTL design
Logic Synthe	sis: Concepts, technology-independent vs. technology-depended	ent synthesis
Gate-Level M	inimization: Boolean algebra, Karnaugh maps, Quine-McClusk	key algorithm
Combinational	and Sequential Circuit Synthesis: Logic synthesis	approaches
Simulation T	echniques: Functional, timing, and gate-level simulation; fau	ilt simulation
MODULE 3:	Physical Design Automation	10 Hours

• Introduction to Physical Design: Objectives, layout stages, layout styles

- Partitioning: Min-cut, recursive, Kernighan-Lin, Fiduccia-Mattheyses algorithms
- Floorplanning and Placement: Basics, constraints, floorplanning algorithms, placement objectives
- Routing: Global vs. detailed routing, channel and switchbox routing, Maze and Steiner tree algorithms
- Compaction: Problem formulation, techniques, and algorithms

Total Hours	30 Hours

Text Books

- 1. "CMOS VLSI Design: A Circuits and Systems Perspective" Neil H. E. Weste and David Money Harris
- 2. "Principles of CMOS VLSI Design" Neil H. E. Weste and Kamran Eshraghian
- 3. "VLSI Design Methodologies" Giovanni De Micheli.

Reference Books:

- 4. "Basic VLSI Design" Douglas A. Pucknell and Kamran Eshraghian.
- 5. "Digital Integrated Circuits: A Design Perspective" Jan M. Rabaey
- 6. "Introduction to VLSI Circuits and Systems" John P. Uyemura

Department of Electronics and Communication Engineering

Program: B.Tech. in ECE	Year, Semester: 3 rd , 5th.
Course Title: SAP (SAPS/4HANA)	Subject Code:TIU-UTR-T301

COURSE OBJECTIVE:

Enable the student to:

- 1. Understand and Navigate SAPS/4HANA Architecture
- 2. Master core functional modules in SAPS/4HANA
- 3. Implement and optimize SAPS/4HANA for business transformation.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Define the fundamental concepts of SAP S/4HANA, including its architecture, modules, and key business processes.	K1
CO-2:	Explain the differences between SAP ECC and SAP S/4HANA, including key innovations like the Universal Journal, SAP Fiori, and HANA database capabilities.	K2
CO-3:	Demonstrate the navigation of the SAP S/4HANA interface and execute basic transactions in core modules like Finance (FI), Materials Management (MM), and Sales & Distribution (SD).	K3
CO-4:	Implement fundamental business processes in SAP S/4HANA, such as procure-to- pay, order-to-cash, and record-to-report, using standard SAP functionalities.	K3
CO-5:	Analyze real-time analytics and reporting capabilities in SAP S/4HANA, utilizing SAP Fiori applications and embedded analytics.	K4
CO-6:	Evaluate SAP S/4HANA deployment options (on-premise, cloud, and hybrid) and their impact on business transformation and digital innovation.	K4

COURSE CONTENT:

MODULE 1: Building Tomorrow's ERP with SAP S/4HANA	6 Hours
The Future of ERP	
Discover the Value of SAPS/4HANA	
SAPS/4HANA: Scope and Intelligent Processes	
A Modern User Experience with SAP S/4HANA	
Central Business Configuration for SAPS/4HANACloud	
MODULE 2: Navigation in SAPSystems	6 Hours
Logon to the system.	
Initial Screen: Menu Bar, Title Bar, ApplicationToolbar, SAPEasyAccess Menu	
Favourites:AddT-Code,Folder,URL	
Transaction Codes	
User Specific Settings	
Help Functions	

MODULE 3:Introduction to S/4HANA using GBI6 HoursGBI Business StorySAPS/4HANA ArchitectureOrganizational StructureOrganizational StructureProductsSales ArchitectureProductsBusinessProcess6 HoursBusinessProcess6 HoursOverview of SD6 HoursCreating Master Data6 HoursSales order process9Pre-sales Activities5Shipping,Billing,CreditManagement6 HoursOverview of Material Management6 HoursOverview of Material Management70 HoursOverview of Material Management70 HoursOverview of Material Management70 HoursOverview of Material Management70 HoursMMorganizationstructure70 HoursCreating Master Data70 HoursPurchasing InformationR70 HoursCreatingInvoice,GoodsReceipt,Payment30 Hours			
GBI Business Story SAPS/4HANA Architecture Organizational Structure Products BusinessProcess MODULE 4: Sales & Distribution Business Process Overview of SD Creating Master Data Sales order process Pre-sales Activities Shipping,Billing,CreditManagement MODULE 5: Integrated Materials Management Process Overview of Material Management MMorganizationstructure Creating Master Data Pre-sales Activities Shipping,Billing,CreditManagement MODULE 5: Integrated Materials Management Process Overview of Material Management MMorganizationstructure Creating Master Data Purchasing InformationR CreatingInvoice,GoodsReceipt,Payment TOTAL LAB HOURS 30 Hours	MODULE 3:	Introduction to S/4HANA using GBI	6 Hours
SAPS/4HANA Architecture Organizational Structure Products BusinessProcess MODULE 4: Sales & Distribution Business Process Overview of SD Creating Master Data Sales order process Pre-sales Activities Shipping,Billing,CreditManagement MODULE 5: Integrated Materials Management Process Overview of Material Management MMorganizationstructure Creating Master Data Purchasing InformationR CreatingInvoice,GoodsReceipt,Payment TOTAL LAB HOURS 30 Hours	GBI Business S	tory	
Organizational Structure Products BusinessProcess MODULE 4: Sales & Distribution Business Process Overview of SD Creating Master Data Sales order process Pre-sales Activities Shipping,Billing,CreditManagement MODULE 5: Integrated Materials Management Process Overview of Material Management MMorganizationstructure Creating Master Data Purchasing InformationR CreatingInvoice,GoodsReceipt,Payment TOTAL LAB H∪URS 30 Hours	SAPS/4HANA	Architecture	
Products BusinessProcess BusinessProcess 6 Hours MODULE 4: Sales & Distribution Business Process 6 Hours Overview of SD Creating Master Data 5 Sales order process Pre-sales Activities 5 Shipping,Billing,CreditManagement 6 Hours 6 MODULE 5: Integrated Materials Management Process 6 Hours Overview of Material Management 6 Hours 6 Overview of Material Management Fresting Master 5 Purchasing InformationR Creating Master 5 Creating Invoice,GoodsReceipt,Payment 30 Hours 30 Hours	Organizational	Structure	
BusinessProcess 6 Hours MODULE 4: Sales & Distribution Business Process 6 Hours Overview of SD Creating Master Data 6 Hours Sales order process Pre-sales Activities 5 Pre-sales Activities Shipping,Billing,CreditManagement 6 Hours MODULE 5: Integrated Materials Management Process 6 Hours Overview of Material Management 6 Hours 6 Hours Overview of Material Management 7 7 Morganizationstructure 6 Hours 6 Hours Overview of Material Management 7 7 Morganizationstructure 7 7 Creating Master Data 9 9 Purchasing InformationR 7 7 CreatingInvoice,GoodsReceipt,Payment 30 Hours	Products		
MODULE 4:Sales & Distribution Business Process6 HoursOverview of SD Creating Master Data6 HoursSales order process9Pre-sales Activities5Shipping,Billing,CreditManagement6MODULE 5:Integrated Materials Management ProcessOverview of Material Management6 HoursOverview of Material Management6 HoursMMorganizationstructure6 HoursCreating Master Data9Purchasing InformationR9CreatingInvoice,GoodsReceipt,Payment30 HoursTOTAL LAB H∪URS30 Hours	BusinessProces	\$	
MODULE 4:Sales & Distribution Business Process6 HoursOverview of SD Creating Master Data			
Overview of SDCreating Master DataSales order processPre-sales ActivitiesShipping,Billing,CreditManagementMODULE 5:Integrated Materials Management Process6 HoursOverview of Material ManagementMMorganizationstructureCreating Master DataPurchasing InformationRCreatingInvoice,GoodsReceipt,PaymentTOTAL LAB H∪URS30 Hours	MODULE 4:	Sales & Distribution Business Process	6 Hours
Creating Master Data Sales order process Pre-sales Activities Shipping,Billing,CreditManagement MODULE 5: Integrated Materials Management Process MODULE 5: Integrated Materials Management Process Overview of Material Management 6 Hours Overview of Material Management 6 Hours Overview of Material Management 6 Hours Purchasing InformationR	Overview of SI		
Sales order process Pre-sales Activities Shipping,Billing,CreditManagement MODULE 5: Integrated Materials Management Process Overview of Material Management 6 Hours Overview of Material Management 6 Hours MMorganizationstructure 5 Creating Master Data 7 Purchasing InformationR 7 CreatingInvoice,GoodsReceipt,Payment 30 Hours	Creating Master	Data	
Pre-sales Activities Shipping,Billing,CreditManagement MODULE 5: Integrated Materials Management Process Overview of Material Management 6 Hours Overview of Material Management 6 Hours MMorganizationstructure 6 Hours Creating Master Data	Sales order proc	cess	
Shipping,Billing,CreditManagement MODULE 5: Integrated Materials Management Process 6 Hours Overview of Material Management 6 Hours 6 Hours Overview of Material Management 6 Hours 6 Hours MMorganizationstructure 7 7 7 Creating Master Data 7 7 7 Purchasing InformationR 7 7 7 CreatingInvoice,GoodsReceipt,Payment 30 Hours 30 Hours	Pre-sales Activi	ties	
MODULE 5: Integrated Materials Management Process 6 Hours Overview of Material Management 6 Hours 6 Hours Overview of Material Management 6 Hours 6 Hours MMorganizationstructure 6 Hours 6 Hours Creating Master Data 704 704 704 Purchasing InformationR 707 707 707 TOTAL LAB HOURS 30 Hours 700	Shipping,Billing	g,CreditManagement	
MODULE 5:Integrated Materials Management Process6 HoursOverview of Material Management			
Overview of Material Management MMorganizationstructure MMorganizationstructure Image: Creating Master Data Purchasing InformationR Image: CreatingInvoice,GoodsReceipt,Payment TOTAL LAB HOURS 30 Hours	MODULE 5:	Integrated Materials Management Process	6 Hours
MMorganizationstructure Creating Master Data Purchasing InformationR CreatingInvoice,GoodsReceipt,Payment TOTAL LAB HOURS 30 Hours	Overview of M	aterial Management	
Creating Master Data Purchasing InformationR CreatingInvoice,GoodsReceipt,Payment TOTAL LAB HOURS 30 Hours	MMorganizatio	nstructure	
Purchasing InformationR CreatingInvoice,GoodsReceipt,Payment TOTAL LAB HOURS 30 Hours	Creating Master Data		
CreatingInvoice,GoodsReceipt,Payment TOTAL LAB HOURS 30 Hours	Purchasing Info	rmationR	
TOTAL LAB HOURS30 Hours	CreatingInvoice	,GoodsReceipt,Payment	
	TOTAL LAB	HOURS	30 Hours

Department of Electronics and Communication Engineering

Program: B.Tech. in ECE	Year, Semester: 3 RD , 5 TH
Course Title: Computer Architecture and Organization	Subject Code: TIU-UCS- T311
Contact Hours/Week: 3–0–0	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

- 1. To introduce the basic concepts and principles of computer architecture, including the organization and structure of modern computer systems.
- 2. To develop an understanding of the instruction set architecture (ISA) and how it influences processor design and program execution.
- 3. To explore the design and functioning of various components of the CPU, such as ALU, control unit, registers, and data path.
- 4. To study memory hierarchy and organization, including cache memory, virtual memory, and memory management techniques.
- 5. To analyze performance issues and optimization techniques in computer systems, including pipelining, parallelism, and input/output subsystems.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Recall the fundamental components and principles of computer architecture	K1
CO-2:	Explain the working of instruction sets, addressing modes, and data representation formats	K2
CO-3:	Illustrate the design and operation of arithmetic and logic units (ALU) and control units	К2
CO-4:	Apply knowledge of memory systems and hierarchy, including cache and virtual memory, in system design	К3
CO-5:	Demonstrate the functioning of pipelining and its impact on processor performance	К3
CO-6:	Analyze the performance of various architectural design alternatives using suitable metrics.	K4

COURSE CONTENT:

MODULE 1:	6 Hours
Recall the fundamental components and principles of computer architecture, Basic	structure and
functional units of a computer, Von Neumann vs Harvard architecture, Instruction et	xecution cycle,
Introduction to performance metrics (MIPS, FLOPS, CPI), Evolution of processors	and trends in
computing	
MODULE 2:	6 Hours
Instruction Set Architecture (ISA) and Data Representation, Explain the working of i	nstruction sets,
addressing modes, and data representation formats, Instruction formats and types (R	ISC vs CISC),
Addressing modes: immediate, direct, indirect, indexed, Data representation: number s	systems, binary
arithmetic, fixed and floating-point formats, Instruction cycle and decoding	
MODULE 3:	8 Hours
Arithmetic and Logic Unit (ALU) and Control Unit Design, Illustrate the design an	d operation of
arithmetic and logic units (ALU) and control units, ALU operations: additio	n, subtraction,
multiplication, division, Design of combinational and sequential logic for ALU, Hardwired vs	
microprogrammed control, Control signals and sequencing	
MODULE 4:	6 Hours
Memory Hierarchy and Organization. Apply knowledge of memory systems and hiera	roby including

Memory Hierarchy and Organization, Apply knowledge of memory systems and hierarchy, including cache and virtual memory, in system design, Memory types: primary, secondary, and tertiary, Cache memory: mapping techniques and replacement policies, Virtual memory: paging and segmentation, Memory management hardware

MODULE 5:

Pipelining and Instruction-Level Parallelism, Demonstrate the functioning of pipelining and its impact		
on processor pe	erformance, Basic pipelining concepts, Pipeline hazards: structural, data	a, and control,
Techniques to c	vercome hazards, Superscalar and VLIW architectures (introductory)	
		6
MODULE 0.		Hours
Performance Analysis and Advanced Topics, Analyze the performance of various architectural design		
alternatives using suitable metrics, Performance metrics: throughput, latency, CPI,		
Benchmarks a	nd real-world performance evaluation, Introduction to multi-core	and parallel
architectures, Case studies and performance comparison		
TOTAL LAB	HOURS	40 Hours

Books:

- 1. Computer Architecture: A Quantitative Approach, Authors: John L. Hennessy and David A. Patterson, Publisher: Morgan Kaufmann
- 2. ComputerArchitecture , Author: Charles Fox, Publisher: No Starch Press
- 3. Essentials of Computer Architecture, Author: Douglas Comer, Publisher: CRC Press Taylor & Francis
- 4. Fundamentals of Computer Architecture and Design ,Author: Ahmet Bindal, Publisher: Springer
- 5. Computer System Architecture, Author: M. Morris Mano, Publisher: Pearson

Department of Electronics & Communication Engineering

Program: B. Tech. in ECE	Year, Semester: 3 rd Yr., 5th Sem.
Course Title: EM Theory and Antenna	Subject Code: TIU-UEC-T309
Contact Hours/Week: 3–1–0 (L–T–P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 1. understand fundamental laws and equations of electromagnetic theory and properties of electromagnetic wave in different unbounded media.
- 2. analyze the concepts and methods of electromagnetic wave propagation through guided structure like transmission line and waveguide.
- 3. develop fundamental idea on different antenna structures based on the knowledge of electromagnetic theory.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO_{1}	Understand the fundamental concepts of coordinate systems and vector	кэ	
CO-1.	algebra to solve problems related to Electromagnetic Theory and Antenna.		

CO-2:	Apply the basic laws of electrostatics and magnetostatics to solve problems of Electromagnetism.	К3
CO-3:	Interpret the concepts of Maxwell equations along with boundary conditions.	K3
CO-4:	Analyze the equations, various properties and propagation of Electromagnetic waves in different media.	K4
CO-5:	Demonstrate the concepts of transmission lines and waveguides for electromagnetic wave propagation in guided media.	К3
CO-6:	Identify the basic concept of antennas for electromagnetic radiation in free space and numerical techniques in electromagnetics.	K2

COURSE CONTENT:

MODULE 1:

Recapitulation of Scalar & Vectors, Gradient, Divergence & Curl and their physical interpretation, Divergence Theorem & Stokes Theorem, Scalar and Vector Potential

MODULE 2:

Coulomb's law, Electric flux & Gauss Law, Method of images; Biot and Savart Law, Ampere's Law.

MODULE 3:

Maxwell's equations: Integral & Differential form, its significance, displacement current, equation of continuity, boundary conditions.

MODULE 4:

Propagation of uniform plane waves in unbounded medium: reflection, refraction, phase and group velocities.

MODULE 5:

Transmission lines and waveguides: modes, design, travelling waves, standing waves, pulse propagation, characteristic impedance, cut-off frequency, attenuation, dispersion, power-handling capability.

MODULE 6:

Radiation concept, Antennas: elementary dipole, half-wave dipole, radiation patterns, directivity, gain, Image Theory, Friis Transmission Formula, pattern multiplication, other basic antennas, Microstrip Patch Antennas.

MODULE 7: 4 Hours Numerical Technique in Electromagnetics: Method of Moment. **TOTAL LECTURES** 44 Hours

Books:

- 1. M. N. O. Sadiku, "Principles of Electromagnetics", Oxford University Press.
- 2. W. H. Hayt& J. A. Buck, "Engineering Electromagnetics", McGraw Hill.
- 3. E. C. Jordan & K. G. Balmain, "Electromagnetic Waves & Radiating Systems", Prentice Hall.
- 4. J. D. Kraus, "Antennas", McGraw Hill.
- 5. J. D. Kraus & D. Fleisch, "Electromagnetics with Applications", McGraw Hill.
- 6. R. F. Harrington, "Introduction to Electromagnetic Engineering", Dover Publications.

8 Hours

6 Hours

6 Hours

6 Hours

6 Hours

- 7. J. D. Ryder, "Networks, Lines and Fields", Pearson.
- 8. G. S. N. Raju, "Electromagnetic Field Theory and Transmission Lines", Pearson.
- 9. G. S. N. Raju, "Antenna and Wave Propagation", Pearson.

10. J. A. Edminister and M. Nahmi, "Schaum's Outlines in Fundamentals of Electromagnetics", McGraw Hill.

11.David K. Cheng, "Field and Wave Electromagnetics".

12.I. J. Bahl and P. Bhartia, "Micro Strip Antennas", Artech House.

13.R. L. Yadava, "Electromagnetic Fields & Waves", Khanna Publishing House.

14.R. K. Shevgaonkar, "Electromagnetic Waves", Tata McGraw Hill.

15.Narayana Rao, "Engineering Electromagnetics", Prentice Hall of India.

16.K. D. Prasad, "Antennas and Wave Propagation", Satya Prakashan.

Department of Electronics and Communication Engineering

Program: B. Tech. in ECE	Year, Semester: 3rd Yr., 5th Sem.
Course Title: Analog Communication	Subject Code: TIU-UEC-T305
Contact Hours/Week: 3–0–0 (L–T–P)	Credit: 3

COURSE OBJECTIVE:

Enable the student to:

СОВ	Objectives
1.	To Understand the basic components of a communication system, including transmitters, receivers, and physical channels for communication.
2.	To Study Amplitude Modulation (AM), Frequency Modulation (FM), and Phase Modulation (PM), Pulse modulations along with their characteristics, advantages, and limitations.
3.	To analyze the performance of different modulation schemes with their modulation index, percentage of modulation bandwidth requirements, power efficiency, and signal-to-noise ratio (SNR).
4.	To illustrate the mathematical and graphical representation of spectrums of modulated and demodulated signals.
5.	Toexplore different demodulation techniques for AM, FM, and PM, including envelope detection, synchronous detection, and discriminator circuits.
6.	To study different noise factor related to the analog communication and analyze signal performance in presence of noise signal.

COURSE OUTCOME:

On completion of the course, the student will be able to:

COs	Outcomes	Level
1.	Able to recognize the basics of communication system and its all components.	K2
2.	Understand different parts analog modulation schemes, their efficiency, bandwidth and other factors.	K2
3.	Able to calculate different factors of all modulation schemes.	K3
4.	Illustrate mathematical and graphical representations of all modulation schemes, their modulators and demodulators.	K3
5.	Analyze the behavior of a communication system and its limitations.	K4
6.	Identify the performance of communication systems in the presence of noise.	K4

COURSE CONTENT:

Modulation, Types, Analysis of Modulation, Sideband and energy consideration, low pass and band pas	MODULE 1:		8 Hours
sionals	Modulation, Ty	pes, Analysis of Modulation, Sideband and energy consideration, low pass	s and band pass
Signuis.	signals.		

MODULE 2:	8 Hours
Demodulation, Types of detection, Analysis of amplitude and frequency modulation; Mod	ulators.

MODULE 3:

MODIII F 2.

Nonlinear modulation techniques, FM and PM, narrowband FM, wideband FM, Generation of FM wave, Classification of FM detectors, Radio transmitters and receivers.

MODULE 4:

Sampling a signal by periodic pulse stream: spectra of ideally sampled signal, Nyquist sampling theorem, Discriminator, Slope detector, Staggered tuned discriminator, Foster- Seely discriminator, Analysis of Centre tuned discriminator, Noise Sources in transmitting and receiving systems, Thermal noise, Shot noise, Noise Figure.

MODULE 5:

Time-division multiplexing, Wireless power transfer, Near-field techniques, Far-field techniques, Plasma channel coupling, wireless energy transmission technologies.

TOTAL LECTURES

Books:

Text Books:

1. H. Taub, D. L. Schilling and G. Saha, "Principle of Communication system", McGraw Hill.

10Hours

10 Hours

8 Hours

- 2. W. Tomasi, "Electronic Communication System: Fundamentals through Advanced", Pearson.
- 3. S. Haykin and M. Moher, "Introduction to Analog and Digital Communication", Wiley.
- 4. B.P. Lathi and Z. Ding, "Modern Analog and Digital communication system", Oxford.

Department of Electronics & Communication Engineering

Program: B. Tech. in ECE	Year, Semester: 3 RD Yr., 5 TH Sem.
Course Title: MACHINE LEARNING WITH LAB	Subject Code: TIU-UEC-C301
Contact Hours/Week: 3–0–2 (L–T–P)	Credit: 4

COURSE OBJECTIVE:

Enable the student to:

- 1. Introduce fundamental concepts of machine learning and familiarize students with different learning paradigms, including supervised, unsupervised, and reinforcement learning.
- 2. Develop an understanding of key machine learning techniques, such as regression, classification, clustering, and their mathematical foundations, including loss functions and optimization.
- 3. Provide hands-on experience in implementing machine learning models using Python-based libraries such as Scikit-Learn, TensorFlow, and PyTorch.
- 4. Preprocess and analyze datasets, including feature selection, dimensionality reduction, and performance evaluation using metrics like cross-validation and confusion matrices.
- 5. Equip students with the ability to compare and evaluate different machine learning algorithms, considering their accuracy, efficiency, and applicability to real-world problems.

COURSE OUTCOME:

On completion of the course, the student will be able to:

CO-1:	Define the fundamental concepts of machine learning, including supervised, unsupervised, and reinforcement learning and identify various machine learning algorithms and their applications in real-world scenarios.	K1
CO-2:	Explain the working principles of regression, classification, and clustering techniques.	K2
CO-3:	Interpret the mathematical foundations of machine learning, including loss functions, optimization, and evaluation metrics.	K2
CO-4:	Implement machine learning models using Python libraries such as Scikit-Learn, TensorFlow, or PyTorch	K3
CO-5:	Apply data preprocessing techniques, feature selection, and dimensionality reduction in real datasets and Analyze model performance using cross-validation, confusion matrices, and other evaluation methods.	K3,K4
CO-6:	Compare different machine learning algorithms in terms of accuracy, computational efficiency, and applicability.	K4

COURSE CONTENT:

MODULE 1:

Introduction to Machine Learning, Examples of Machine Learning applications -Learning associations, Classification, Regression, Unsupervised Learning, ReinforcementLearning. Supervised learning, Input representation, Hypothesis class, Basic probability Models: probability distribution, Bayesian Theorem, Maximum Likelihood probability, Maximum Aposteriori probability, Least square, introduction to python programming.

MODULE 2:

Simple Linear Regression, Multiple Linear Regression, Estimating the Regression Coefficients, R-squrae value, Assessing the Accuracy of the Model, Qualitative Predictors, Extensions of the Linear Model, Linear Model Selection and Regularization, Subset Selection, Shrinkage Methods, Ridge Regression, The Lasso, Selecting the Tuning Parameter, Dimension Reduction Methods ,Principal Components Regression(PCA), Partial Least Squares ,High-Dimensional Data ,Regression in High Dimensions Interpreting Results in High Dimensions Polynomial regression, implementation by python programming for regression problem

MODULE 3:

Classification problem, Logistic, Multiple & Multinomial Logistic Regression, Estimating the Regression Coefficients, Generative Models for Classification, Linear Discriminant Analysis for different p values, Quadratic Discriminant Analysis, Naive Bayes, K-Nearest Neighbors, Comparison of Classification Methods, Cross validation and re-sampling methods- K-fold cross validation, Bootstrap, implementation by python programming for classification problem

MODULE 4:

Tree-based learning methods ,The Basics of Decision Trees, Regression Trees, Classification Trees ,Trees Versus Linear Models ,Advantages and Disadvantages of Trees, Entropy, Information Gain, Tree construction, ID3, Issues in Decision Tree learning- Avoiding Over-fitting, Reduced Error Pruning, The problem of Missing Attributes, Bagging, Random Forests, Boosting, and Bayesian Additive, Regression Trees, implementation by python programming for tree based problem

MODULE 5:

Support Vector Machine, Maximal Margin Classifier, Classification Using a Separating Hyperplane, Support Vector Classifiers, Support Vector Machines, Classification with Non-Linear Decision Boundaries, Kernel functions. models, Three basic problems of HMMs - Evaluation problem, findingstate sequence, Learning model parameters. Unsupervised Learning - Clustering Methods - Kmeans, Expectation-Maximization Algorithm, Hierarchical Clustering Methods, Density based clustering, implementation by python programming for SVM problem

TOTAL LECTURES

TEXT BOOKS:

1. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

2. Ethem Alpayidin, Introduction to Machine Learning (Adaptive Computation and machine Learning), MIT Press, 2004.

3. Margaret H. Dunham, Data Mining: Introductory and Advanced Topics, Pearson, 2006.

4. Mitchell T., Machine Learning, McGraw Hill.

5. Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, Machine Learning : An

6 Hours

10 Hours

10 Hours

46 Hours

10 Hours