

# **Department of Electronics and Communication Engineering**

Second Semester

| Program: B. Tech. in ECE          | Year, Semester: 1st Yr., 2nd Sem. |
|-----------------------------------|-----------------------------------|
| Course Title: Mathematics-IIA     | Subject Code:TIU-BS-UMA-T12101A   |
| Contact Hours/Week: 3–1–0 (L–T–P) | Credit: 4                         |

## **COURSE OBJECTIVE:**

Enable the student to:

- 1. understand the basics of complex analysis.
- 2. understand the set theory
- 3. familiarize about several applications of integral calculus like finding area and volume bounded by curves.
- 4. Construct some special functions like beta and gamma function.

# **COURSE OUTCOME:**

| CO-1: | Analyze complex functions based on analyticity, integrability along a contour, calculus of residue, etc. and its applications in engineering.                             | K4 |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| CO-2: | Develop ideas on integration of complex valued functions and singularities.                                                                                               | K4 |
| CO-3: | Develop a foundation of set theory and to explore a variety of various mathematical structures by focusing on mathematical objects, operations, and resulting properties. | K4 |
| CO-4: | Develop an understanding of Integral calculus and familiarize with special functions toevaluate some proper and improper integrals using beta and gamma functions.        | K4 |
| CO-5: | Apply double and triple integration to find area and volume bounded by curves.                                                                                            | K4 |
| CO-6: | Apply Gauss divergence theorem, Stoke's theorem and Green's integral theorem                                                                                              | K4 |

| invector calculus. |  |
|--------------------|--|
|                    |  |

| MODULE 1:                                                                                                                                                                                                                                                                   | Complex analysis                                                                                                                                                                                                                                                                                          | 16 Hours                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|
| equations, line integration over                                                                                                                                                                                                                                            | sis: Limit, continuity, differentiability and analyticity of functions, Ca<br>integrals, Cauchy Goursat theorem (statement only), independence of<br>a contour, Cauchy's integral formula, derivatives of analytic functions,<br>s, Zeros and singularities, Residue theorem, evaluation of real integral | path, Complex<br>Taylor's series, |  |
| MODULE 2:                                                                                                                                                                                                                                                                   | Set Theory                                                                                                                                                                                                                                                                                                | Hours                             |  |
| Set Theory: Sets, relations and functions: Operations on sets, relations and functions, binary relations, partial ordering relations, equivalence relations, principles of mathematical induction. Size of a set: Finite and infinite sets, countable and uncountable sets. |                                                                                                                                                                                                                                                                                                           |                                   |  |
| MODULE 3:                                                                                                                                                                                                                                                                   | Integral calculus                                                                                                                                                                                                                                                                                         | 15 Hours                          |  |
| integrals, impro                                                                                                                                                                                                                                                            | is: Riemann Integral, fundamental theorem of integral calculus, application<br>oper integrals, Beta and Gamma functions, reduction formulae. Dounge in order of integration, Jacobian and change of variables formula. Paraces.                                                                           | ble and triple                    |  |
| MODULE 4:                                                                                                                                                                                                                                                                   | Vector calculus                                                                                                                                                                                                                                                                                           | 7 Hours                           |  |
| Vector fields, d theorems with a                                                                                                                                                                                                                                            | ivergence and curl, Line integrals, Green's theorem, surface integral, Gau pplications.                                                                                                                                                                                                                   | uss and Stokes'                   |  |
| TOTAL LECT                                                                                                                                                                                                                                                                  | URES                                                                                                                                                                                                                                                                                                      | 45 Hours                          |  |
| Books:                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                           |                                   |  |

- 1. Higher Engineering Mathematics, B. S. Grewal
- 2. Advanced Engineering Mathematics, Kreyszig
- 3. A Text Book of Engineering Mathematics, *Rajesh Pandey*
- 4. Engineering Mathematics, B. K. Pal, K. Das

| Course Title: Mathematics for Data Science | Subject Code:TIU-BS-UMA-T12102 |
|--------------------------------------------|--------------------------------|
| Contact Hours/Week: 3–0–0 (L–T–P)          | Credit: 3                      |

Enable the student to:

- 1. understand algebraic and geometric representations of vectors and vector spaces and various operations on vector spaces and inner product space.
- 2. learn the basics of probability and apply them to real time problems.
- 3. understand basic statistics, dispersion, regression and curve fitting technique

# **COURSE OUTCOME:**

On completion of the course, the student will be able to:

| CO-1: | develop an understanding of vector spaces and inner product spaces.                                                 | K4 |
|-------|---------------------------------------------------------------------------------------------------------------------|----|
| CO-2: | identify linear transformations on vector spaces and to determine the corresponding matrix representation.          | K4 |
| CO-3: | calculate the probability using basic knowledge and fundamental concepts of probability.                            | K4 |
| CO-4: | illustrate conditional probability, Bayes' Theorem and understand their scope of application to real world problems | K4 |
| CO-5: | To investigate data-based on measures of central tendency, measures of dispersion                                   | K4 |
| CO-6: | To analyze observations in terms of regression and curve fitting                                                    | K4 |

| MODULE 1:                                                                                                                                                                                                                                                                                                                                                        | Linear algebra    | 20 Hours |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|--|
| Linear Algebra: Vector spaces over any arbitrary field, linear combination, linear dependence and independence, basis and dimension, linear transformations, matrix representation of linear transformations, linear functional, dual spaces, Inner product spaces, norms, Gram-Schmidt process, orthonormal bases, projections and least squares approximation. |                   |          |  |
| MODULE 2:                                                                                                                                                                                                                                                                                                                                                        | Basic Probability | 10 Hours |  |
| Classical, relative frequency and axiomatic definitions of probability, mutually exclusive events, independent events, conditional probability, Bayes' Theorem.                                                                                                                                                                                                  |                   |          |  |
|                                                                                                                                                                                                                                                                                                                                                                  |                   |          |  |

| MODULE 3: | Integral calculus | 15Hours |
|-----------|-------------------|---------|
|           |                   |         |

Raw data, Histogram, Frequency polygon.

Measures of central tendencies – Arithmetic mean, Geometric mean, Harmonic mean, Weighted A.M., G.M. and H.M.; Mode, Median, Empirical relation between mean, median and mode; Mean, median and mode for grouped and ungrouped data.

Measures of dispersion- standard deviation and variance for grouped and ungrouped data.

Correlation and Regression – Covariance, Spearman's coefficient of correlation for grouped and ungrouped data; regression and least square curve fitting

| <b>TOTAL HOURS:</b> |
|---------------------|
|---------------------|

**45 Hours** 

## **Textbooks:**

- 1. Higher Engineering Mathematics, B. S. Grewal
- 2. Advanced Engineering Mathematics, E.Kreyszig
- 3. Linear Algebra, S. H. Friedberg, A. J. Insel, L. E. Spence
- 4. Engineering Mathematics, B. K. Pal, K. Das

| Program: B. Tech. in ECE            | Year, Semester: 1st Yr., 2nd Sem. |
|-------------------------------------|-----------------------------------|
| Course Title: Engineering Mechanics | Subject Code:TIU-ES-UME-T12101    |
| Contact Hours/Week: 3–0–0 (L–T–P)   | Credit: 3                         |

#### **COURSE OBJECTIVE:**

Enable the student to:

- 5. understand the basics of vector mechanics and its applications in engineering mechanics
- 6. analyze problems in statics
- 7. analyze problems in dynamics of particles

#### **COURSE OUTCOME:**

| CO-1: | To understand the basics of vector mechanics and its application in engineering | K2 |
|-------|---------------------------------------------------------------------------------|----|
|-------|---------------------------------------------------------------------------------|----|

|       | mechanics.                                                                                                                                                                                                 |    |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| CO-2: | To understand different force systems and the methods of finding their resultants<br>and to be well-versed with the conditions of equilibrium in 2D.                                                       | K2 |
| CO-3: | To be able to apply the laws of static equilibrium in solving problems and perform<br>analysis of statically determinate trusses.                                                                          | K4 |
| CO-4: | To be able to compute centroids of plane areas, composite areas and to be able to compute area moments of inertias and radii of gyration of plane figures.                                                 | K3 |
| CO-5: | To understand basic principles of kinematics of particles, plane, rectilinear and curvilinear coordinate systems and projectile motion                                                                     | K3 |
| CO-6: | To understand basic principles of kinetics of particles leading to Newton's laws and<br>to be able to apply the work-energy and the linear impulse-linear momentum<br>theorems in solving typical problems | K3 |

| MODULE 1:                    | INTRODUCTION                                                                                                                                                                                                                                           | 4 Hours        |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| and force; Partic            | indamentals of Mechanics: Introduction to mechanics; Basic concepts – macles and rigid bodies; Scalars and vectors; Free, sliding, fixed and unit vect multiplication of two vectors; scalar triple product and vector product of 3                    | ors; Addition, |
| MODULE 2:                    | FORCE SYSTEMS AND EQUILIBRIUM                                                                                                                                                                                                                          | 9 Hours        |
| Varignon's theo              | v of forces, and addition of two parallel forces; Resolution of forces; Mome<br>rem; Couples; Force-couple system; Resultant of a force system Equilibriu<br>librium: Free body diagram, equilibrium conditions in 2 dimensions, equil<br>ng friction. | ım: Force      |
| MODULE 3:                    | STRUCTURES                                                                                                                                                                                                                                             | 5 Hours        |
| Plane Truss: Sta<br>sections | tically determinate trusses; Force analysis of a truss - method of joints, me                                                                                                                                                                          | thod of        |
| MODULE 4:                    | DISTRIBUTED FORCES                                                                                                                                                                                                                                     | 7 Hours        |
|                              |                                                                                                                                                                                                                                                        |                |
|                              | ess: Line, area and volume distributions of forces; Centre of gravity; Centre                                                                                                                                                                          |                |
|                              | ne figures; Centroids of composite areas. Moment of Inertia: Area momen<br>nd Parallel axes theorems pertaining to moment of inertia; Radius of gyrati                                                                                                 |                |
|                              |                                                                                                                                                                                                                                                        |                |

Kinematics of Particles: Differential equations of kinematics – plane, rectilinear and curvilinear

motions; Cartesian co-ordinate system; Normal and tangent co-ordinate system, projectile motion.

# MODULE 6: KINETICS OF PARTICLES

12 Hours

45 Hours\*\*

Kinetics of Particles: Newton's second law of motion; Work and energy principle – gravitational

potential energy, elastic potential energy, kinetic energy, power, work-energy theorem, principle of impulse and momentum.

### TOTAL LECTURES

#### **Books:**

- 1. J. L. Meriam and L. G. Kraige, Engineering Mechanics (Vol.1 & 2), Wiley India 2017.
- 2. Shames I. H., Rao G. K. M., Engineering Mechanics, Pearson, 2005.
- 3. Khurmi R.S., A Textbook of Engineering Mechanics, S. Chand, 2018.
- 4. Bhavikatti S. S, Engineering Mechanics, New Age International Publishers, 2021.

| <b>Program:</b> B.Tech in ECE                              | Year, Semester: 1st, 2 <sup>nd</sup> |
|------------------------------------------------------------|--------------------------------------|
| <b>Course Title:</b> Problem Solving using Data Structures | Subject Code: TIU-ES-UCS-T12101      |
| Contact Hours/Week: 3–0–0 (L–T–P)                          | Credit: 3                            |

#### **COURSE OBJECTIVE:**

Enable the student to:

- 1. Introduce fundamental data structures such as arrays, linked lists, stacks, queues, and trees, and their role in computational problem-solving.
- 2. Develop logical and analytical thinking by applying data structures to efficiently store, process, and manipulate data in various programming scenarios.
- 3. Enhance problem-solving abilities by selecting appropriate data structures based on efficiency, scalability, and real-world applicability.

#### **COURSE OUTCOME:**

| CO 1 | Recall and describe fundamental data structures, including arrays, linked lists, stacks, | <b>K</b> 1         |    |
|------|------------------------------------------------------------------------------------------|--------------------|----|
|      | 0-1                                                                                      | queues, and trees. | K1 |

| CO-2 | Explain searching and sorting techniques, along with their efficiency on different data structures.         | K2 |
|------|-------------------------------------------------------------------------------------------------------------|----|
| CO-3 | Apply array and linked list operations to solve computational problems.                                     | K3 |
| CO-4 | Implement stack and queue-based algorithms for expression evaluation and problem-<br>solving scenarios.     | K3 |
| CO-5 | Examine tree-based data structures (Binary Trees, BSTs) and their traversal techniques for problem-solving. | K4 |
| CO-6 | Compare different data structures based on their efficiency, scalability, and real-<br>world applicability. | K4 |

| MODULE 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BASIC CONCEPTS OF DATA REPRESENTATION                                                                                                                                                                                                                                                                                                                                                                | 6 Hours                                     |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|
| Abstract Data Types, Fundamental and Derived Data Types, Representation, Primitive Data Structures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |  |  |
| MODULE 2:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ARRAYS                                                                                                                                                                                                                                                                                                                                                                                               | 9 Hours                                     |  |  |
| and Row Major<br>Multiplication, Sp.<br>Arrays: Find the m<br>array and its sub-ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Arrays, Single and Multidimensional Arrays, Address Calculation Us<br>Ordering, Various Operations on Arrays, Application of Arrays<br>arse Polynomial Representation and Addition. Solving different pro-<br>hissing number in an array, Rotate an array to the right by k steps by r<br>rrays, Move all zeros in the array to the end while maintaining the rela-<br>using a two-pointer approach. | s in Matrix<br>blems using<br>reversing the |  |  |
| MODULE 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SEARCHING AND SORTING ON VARIOUS DATA<br>STRUCTURES                                                                                                                                                                                                                                                                                                                                                  | 6 Hours                                     |  |  |
| Sequential Search,<br>Selection Sort.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Binary Search, Comparison-based sorting concepts, Bubble Sort, In                                                                                                                                                                                                                                                                                                                                    | sertion Sort,                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |  |  |
| MODULE 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STACKS AND QUEUES                                                                                                                                                                                                                                                                                                                                                                                    | 9 Hours                                     |  |  |
| Representation of Stacks and Queues using Arrays and Linked List, Circular Queues. Applications of Stacks: Conversion from Infix to Postfix and Prefix Expressions, Evaluation of Postfix Expression Using Stacks. Solving different problems using stack and queue: Validates if parentheses are balanced, Finds the next greater element for each item in a stack, Implements stack operations using two queues, Reverses the elements of a queue, Implements queue operations using two stacks. Implements a circular queue, Implements queue operations using two stacks. |                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |  |  |
| Module 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Linked Lists                                                                                                                                                                                                                                                                                                                                                                                         | 6 Hours                                     |  |  |

| Single Linked List, Operations on List, Polynomial Representation and Manipulation Using Linked Lists, Circular Linked Lists, Doubly Linked Lists. Solving different problems using Linked List:      |               |          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|--|--|
| Reverse the order of elements in a singly linked list, Merge two linked lists into one list.                                                                                                          |               |          |  |  |
|                                                                                                                                                                                                       |               |          |  |  |
| Module 6                                                                                                                                                                                              | Trees         | 9 Hours  |  |  |
| Binary Tree, Binary Search Tree, Traversal Methods: Preorder, In-Order, Post-Order Traversal (Recursive And Non-Recursive), Representation (Non-threaded and Threaded) of Trees and its Applications. |               |          |  |  |
|                                                                                                                                                                                                       | TOTAL LECTURE | 45 Hours |  |  |

| Program: B. Tech. in ECE                                        | Year, Semester: 1st Yr., 2 <sup>nd</sup> Sem. |  |
|-----------------------------------------------------------------|-----------------------------------------------|--|
| <b>Course Title:</b> Basic Electrical & Electronics Engineering | Subject Code:TIU-ES-UEE-T12101                |  |
| Contact Hours/Week: 3-1-0 (L-T-P)                               | Credit: 4                                     |  |

## Enable the student to:

- 1. Aanalyze and describe the basic electrical quantities, circuit elements, and their voltage-current relationships.
- 2. Design and analyze diode circuits, transistor biasing, and operational amplifier applications.
- 3. Understand the operation and characteristics of semiconductor devices like diodes, BJTs, JFETs, and MOSFETs.
- 4. Analyzing differential working principles of single-phase transformers, including voltage transformation and regulation.

#### **COURSE OUTCOME:**

| CO-1: | Understand Basic Electrical Concepts  | K2 |
|-------|---------------------------------------|----|
| CO-2: | Analyze DC Electrical Networks        | K4 |
| CO-3: | Analyze AC Circuits and Power Systems | K4 |

| CO-4: | Understand Semiconductor Devices and Applications  | K2 |
|-------|----------------------------------------------------|----|
| CO-5: | Design and Analyze Analog Circuits                 | К3 |
| CO-6: | Understand Transformer Principles and Applications | K2 |

| MODULE 1:                                                                                                                                                                                                                                                                                                                                   | Introduction                                                                                                                                                                          |                                                         |                     | 4 Hours          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------|------------------|--|
|                                                                                                                                                                                                                                                                                                                                             | Basic electrical quantities, Voltage, Current, Power. Basic Electrical elements: Resistance, Inductance, Capacitance. Their voltage-current relationship.Voltage and current sources. |                                                         |                     |                  |  |
|                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                         |                     |                  |  |
| MODULE 2:                                                                                                                                                                                                                                                                                                                                   | DC Network Ana                                                                                                                                                                        | ılysis                                                  |                     | 5Hours           |  |
|                                                                                                                                                                                                                                                                                                                                             | L and their app<br>econversion, Star-I                                                                                                                                                | lications in purely resistive circ<br>Delta conversion. | cuits.Concept of 1  | inear, bilateral |  |
|                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                         |                     |                  |  |
| MODULE 3:                                                                                                                                                                                                                                                                                                                                   | DC Network The                                                                                                                                                                        | eorems                                                  |                     | 5 Hours          |  |
| Superposition T                                                                                                                                                                                                                                                                                                                             | heorem, Thevenin                                                                                                                                                                      | 's Theorem, Norton's Theorem, Max                       | kimum Power Trans   | fer Theorem.     |  |
|                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                         |                     |                  |  |
| MODULE 4:                                                                                                                                                                                                                                                                                                                                   | Sinusoidal Steady                                                                                                                                                                     | y State Analysis                                        |                     | 5 Hours          |  |
| Matrix and Determinant: Revision of matrix and determinant, rank and nullity, solutions of system of linear equations using Determinants and Matrices; Eigenvalues and eigenvectors, Cayley-Hamilton Theorem, transformation of matrices, adjoint of an operator, normal, unitary, hermitian and skew-hermitian operators, quadratic forms. |                                                                                                                                                                                       |                                                         |                     |                  |  |
|                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                         |                     |                  |  |
| MODULE 5:                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                       | 3-Ph circuits                                           | 5 Hours             |                  |  |
|                                                                                                                                                                                                                                                                                                                                             | · ·                                                                                                                                                                                   | h star and delta connection. Phasor                     | diagram for 3-ph sy | stem, Balanced   |  |
| 3-phloads, measurement of 3-ph power.                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                       |                                                         |                     |                  |  |
|                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                         |                     |                  |  |
| MODULE 6:                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                       | Semiconductor Devices                                   | 5 Hours             |                  |  |
| Energy bands in solids.Intrinsic and extrinsic semiconductors.P-N junctions. Semiconductor diodes: ZenerandVaractor diodes. Bipolar transistors (operation, characteristics).                                                                                                                                                               |                                                                                                                                                                                       |                                                         |                     |                  |  |
|                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                         |                     |                  |  |
| MODULE 7: 4 Hours                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                       |                                                         |                     |                  |  |

Diode Circuits, BJT biasing & Operation of JFET, MOSFET

| MODULE 8:                                                                                                                                                                                                          | OPAMPs            | 5 Hours |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|--|--|
| Properties of an ideal and a practical OPAMP. Block diagram. Concept of Virtual Short, Inverting and Non-inverting amplifiers, Summing and Differencing amplifier, Differentiator and Integrator.                  |                   |         |  |  |
|                                                                                                                                                                                                                    |                   |         |  |  |
| MODULE 9:                                                                                                                                                                                                          | 1-Ph Transformers | 5 Hours |  |  |
| Faraday's Law, EMF generation (dynamic and static), B-H curve, Construction and operation of single phasetransformer: voltage and current transformation, no-load operation, voltage regulation on resistive load. |                   |         |  |  |
| TOTAL LECTURES                                                                                                                                                                                                     | 43Hours           |         |  |  |

## **Books:**

1. D. Chattopadhyay, P. C. Rakshit, Funndamentals of Electric Circuit Theory, S. Chand. Publications

2. D. Chattopadhyay, P.C. Rakshit, Electronics Fundamentals and Applications, New Age International Publisher

### **Supplementary Reading:**

1. Salivahanan and P. Kumar, Circuit Theory, Vikas Publishing House

2. Kulshreshtha, Basic Electrical Engineering: Principles and Application, Tata McGraw-Hill.

| Program: B.Tech. in ECE                                 | <b>Year, Semester:</b> $1^{st}$ , $2^{nd}$ . |
|---------------------------------------------------------|----------------------------------------------|
| Course Title: Problem Solving using Data Structures Lab | Subject Code:TIU-ES-UCS-L12101               |
| Contact Hours/Week: 0-0-3                               | Credit: 1.5                                  |

# **COURSE OBJECTIVE:**

Enable the student to:

- 1. Develop a strong foundation in data structures and algorithms with a focus on both linear and non-linear structures.
- 2. Implement and analyze searching, sorting, and graph algorithms to optimize problem-solving efficiency.

- 3. Enhance programming skills by applying data structures in real-world applications and evaluating their complexity.
- 4. Understand and assess the time and space complexity of algorithms for efficient software development.

# **COURSE OUTCOME:**

The student will be able to:

| CO-1 | Understand fundamental data structures such as arrays, linked lists, stacks, queues, trees, and graphs along with their applications. | K2 |
|------|---------------------------------------------------------------------------------------------------------------------------------------|----|
| CO-2 | Implement various data structures using programming techniques to efficiently store, manipulate, and retrieve data.                   | К3 |
| CO-3 | Analyze and apply different searching and sorting algorithms to optimize problem-<br>solving.                                         | K4 |
| CO-4 | Evaluate the time and space complexity of algorithms to improve computational efficiency.                                             | K5 |
| CO-5 | Apply data structures and algorithms to solve real-world problems and develop efficient software solutions.                           | К3 |
| CO-6 | Explore advanced data structures and algorithmic techniques for tackling complex computing challenges.                                | K6 |

| MODULE 1:                                                               | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 Hours                                             |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                                                                         | of Data Representation: Abstract Data Types, Fundamental and Derive<br>Primitive Data Structures.                                                                                                                                                                                                                                                                                                                             | ed Data Types,                                      |
| MODULE 2:                                                               | ARRAY REPRESENTATION                                                                                                                                                                                                                                                                                                                                                                                                          | 6 Hours                                             |
| Column and F<br>Multiplication,<br>such as the foll<br>reversing the ar | entation of Arrays, Single and Multidimensional Arrays, Address Cal<br>Row Major Ordering, Various Operations on Arrays, Application of<br>Sparse Polynomial Representation and Addition. Solving different problem<br>owings: Find the missing number in an array, Rotate an array to the righ<br>ray and its sub-arrays, Move all zeros in the array to the end while maintair<br>ro elements using a two-pointer approach. | Arrays Matrix<br>ns using Arrays<br>t by k steps by |
| MODULE 3:                                                               | SEARCHING AND SORTING TECHNIQUES                                                                                                                                                                                                                                                                                                                                                                                              | 6 Hours                                             |
| U                                                                       | Sorting on Various Data Structures: Sequential Search, Binary Search, Con<br>Bubble sort, Insertion Sort, Selection Sort.                                                                                                                                                                                                                                                                                                     | mparison based                                      |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |

| MODULE 4:                                                                | STACK AND QUEUE                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 Hours                                               |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Applications of<br>Expression Usi<br>parentheses are<br>operations using | tes: Representation of Stacks and Queues using Arrays and Linked List, C<br>Stacks, Conversion from Infix to Postfix and Prefix Expressions, Evalu-<br>ng Stacks. Solving different problems using stack and queue such<br>balanced, Finds the next greater element for each item in a stack, Im<br>g two queues, Reverses the elements of a queue, Implements queue opera<br>nts a circular queue, Implements queue operations using two stacks. | ation of Postfix<br>as Validates if<br>plements stack |
| MODULE 5:                                                                | LINKED LISTS                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 Hours                                               |
| Linked Lists, C                                                          | ngle Linked List, Operations on List, Polynomial Representation and Man<br>ircular Linked Lists, Doubly Linked Lists. Solving different problems us<br>the order of elements in a singly linked list, Merge two linked lists into on                                                                                                                                                                                                              | ing Linked List                                       |
| MODULE 6:                                                                | TREE DATA STRUCTURES AND TRAVERSALS                                                                                                                                                                                                                                                                                                                                                                                                               | 9 Hours                                               |
| •                                                                        | Tree, Binary Search Tree, Traversal Methods: Preorder, In-Order, Post-<br>Non-Recursive), Representation (Non-threaded and Threaded) of                                                                                                                                                                                                                                                                                                           |                                                       |
| TOTAL LAB                                                                | IOURS                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45 Hours                                              |

#### Books:

- 1. "Data Structures in C" by Tanenbaum, Moshe J. & Augenstein, PhilipC
- 2. Gilberg and Forouzan: "Data Structure- A Pseudocode approach with C" by Thomson publication
- 3. "Fundamentals of Data Structure" (Schaum's Series) Tata-McGraw-Hill.
- 4. "Fundamentals of data structure in C" Horowitz, Sahani & Freed, Computer Science Press.

"Data Structures Using C" by Reema Thareja

| Program: B. Tech. in ECE                                             | Year, Semester: 1 <sup>st</sup> Yr., 2nd Sem. |
|----------------------------------------------------------------------|-----------------------------------------------|
| <b>Course Title:</b> Basic Electrical Engineering Lab and Simulation | Subject Code: TIU-ES-UEE-L12101               |
| Contact Hours/Week: 0–0–4 (L–T–P)                                    | Credit: 2                                     |

# **COURSE OBJECTIVE:**

Enable the student to:

- 1. introduce fundamental electrical and electronic circuit theorems and develop analytical skills for solving electrical networks.
- 2. familiarize students with essential circuit components, including R-L-C circuits, diodes, rectifiers, and fluorescent lamps, and their practical applications.

3. enhance hands-on laboratory skills by conducting experiments on circuit analysis, diode characteristics, and rectifier efficiency evaluation.

# **COURSE OUTCOME:**

The student will be able to:

| CO-1 | Identify and understand fundamental electrical and electronic circuit theorems and their applications. | K1 |
|------|--------------------------------------------------------------------------------------------------------|----|
| CO-2 | Explain the working principles of R-L-C circuits, diodes, rectifiers, and fluorescent lamps.           | K2 |
| CO-3 | Apply circuit theorems such as Superposition and Thevenin's Theorem to analyze electrical networks.    | K3 |
| CO-4 | Conduct experiments to measure and analyze V-I characteristics of P-N junction and Zener diodes.       | K3 |
| CO-5 | Evaluate the efficiency and power factor of electrical circuits, rectifiers, and fluorescent lamps.    | K4 |
| CO-6 | Compare different rectifier circuits and analyze their output waveforms and ripple factors.            | K4 |

| <b>Experiment</b> 1 | Verification of Superposition Theorem                                                                                                                                                   | 5 Hours  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| circuit analysis    | ation of superposition theorem, Application in linear electrical circuits, with multiple voltage/current sources, Practical applications in cir nd network analysis.                    |          |
| Experiment 2        | Study of R-L-C Series Circuit                                                                                                                                                           | 6 Hours  |
| phase angle, Vol    | resistance (R), inductance (L), and capacitance (C) in AC circuits, Imped<br>tage and current phase relationships, Leading and lagging power fac-<br>cuit analysis and troubleshooting. |          |
| Experiment 3        | Verification of Thevenin's Theorem                                                                                                                                                      | 6 Hours  |
|                     | ation of Thevenin's theorem, Converting complex circuits into Theveni<br>nin voltage (Vth) and resistance (Rth), Practical applications in circui                                       | <u>^</u> |
| Experiment 4        | Characteristics of Fluorescent Lamp                                                                                                                                                     | 5 Hours  |

Gas discharge and phosphor coating in light production, Role of starter, choke (ballast), and electrodes, Measuring voltage, current, and power consumption, Efficiency comparison with incandescent and LED lamps, Impact of inductive ballast on power factor and improvement methods, Performance comparison of electromagnetic vs. electronic ballasts, Energy savings, lifespan, and environmental concerns (mercury content).

| Experiment 5      | Familiarization with Basic Electronic Components                                                                                                                                           | 6 Hours      |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| switches (SPDT,   | ecifications, and testing of R, L, and C components (Color codes), Po<br>DPDT, DIP), Breadboards and Printed Circuit Boards (PCBs), Active<br>ETs, MOSFETs, Power transistors, SCRs, LEDs. |              |
| Experiment 6      | Study of V-I Characteristics of P-N Junction Diode in Forward Bias                                                                                                                         | 5 Hours      |
|                   | and barrier potential, Forward bias operation, Breakdown voltage and hee voltage and ideal PN junction diode characteristics.                                                              | Peak Inverse |
| Experiment 7      | V-I Characteristics of Zener Diode in Reverse Bias                                                                                                                                         | 6 Hours      |
| Depletion layer a | and barrier potential, Reverse bias operation, Breakdown voltage and hee voltage and ideal Zener diode characteristics.                                                                    | Peak Inverse |
| Experiment 8      | Study of Half-Wave and Full-Wave Rectifier                                                                                                                                                 | 6 Hours      |
|                   | Half-wave and full-wave rectifiers (Center-tap and Bridge), Output waveforms and voltage regulation<br>Ripple factor and rectifier efficiency.                                             |              |
|                   | TOTAL LAB HOURS                                                                                                                                                                            | 45 Hours     |

## **Books:**

- 1. Boylestad, R. L., &Nashelsky, L. (2015). Electronic devices and circuit theory (11th ed.). Pearson.
- 2. Hayt, W. H., Kemmerly, J. E., & Durbin, S. M. (2018). Engineering circuit analysis (9th ed.). McGraw-Hill Education.
- 3. Sedra, A. S., & Smith, K. C. (2016). Microelectronic circuits (7th ed.). Oxford University Press.
- 4. Malvino, A. P., & Bates, D. J. (2016). Electronic principles (8th ed.). McGraw-Hill Education.

| Program: B | .Tech in ECE |
|------------|--------------|
|------------|--------------|

| Course Title: Engineering Drawing and Graphics | Subject Code: TIU-ES-UME-L12191 |
|------------------------------------------------|---------------------------------|
| Contact hours/week:0-0-3(L-T-P)                | Credit:1.5                      |

Enable the student to:

- 1. Develop an understanding of the fundamental concepts and significance of engineering drawing in various engineering disciplines.
- 2. Acquire skills to construct and analyze engineering curves, projections of points, lines, planes, and solids.
- 3. Learn to interpret and create orthographic and isometric projections using conventional and computer-aided drafting techniques.
- 4. Gain proficiency in using drafting software for preparing accurate engineering drawings.

# **COURSE OUTCOME:**

On completion of the course, the student will be able to:

| CO-1: | Understand the fundamental principles and scope of engineering drawing across various engineering disciplines. | K2       |
|-------|----------------------------------------------------------------------------------------------------------------|----------|
| CO-2: | Demonstrate proficiency in constructing and analyzing different engineering curves.                            | К3       |
| CO-3: | Apply projection techniques for points, lines, planes, and solids in different orientations.                   | K3       |
| CO-4: | Develop skills to create orthographic and isometric projections accurately.                                    | K3       |
| CO-5: | Interpret and convert between pictorial, orthographic, and isometric views of objects.                         | K2,K3,K6 |
| CO-6: | Utilize computer-aided drafting tools to create precise engineering drawings.                                  | K6       |

| MODULE 1: | Introduction                                                                                                                                            | 6 Hours        |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|           | neering Drawing in all Branches of Engineering, Uses of Drawing In press of Arrowheads, Lines, Dimension System, Representative Fraction, Tonal Scale). |                |
| MODULE 2: | Engineering Curves                                                                                                                                      | 6Hours         |
|           | f Engineering Curves, Application of Engineering Curves, Constructions<br>-ellipse; parabola; hyperbola with Tangent and Normal).                       | of Engineering |

| MODULE 3:                                                        | LE 3: Projection of Points and Straight Lines                                                                                                                                                                         |                                                     |  |  |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|
| Principal Plane                                                  | ctions - Oblique, Perspective, Orthographic and Isometric Projections;<br>s of Projections, Projections of Points located in all four Quadrants; Proj<br>of the Reference Plane and inclined to two Reference Planes. |                                                     |  |  |  |
| MODULE 4:                                                        | Projections of Planes and Solids                                                                                                                                                                                      | 9 Hours                                             |  |  |  |
|                                                                  | various planes (Polygonal, Circular, Elliptical shape inclined to one of the reference planes) and Projections of Solids (cube, prism, pyramid, cylin                                                                 |                                                     |  |  |  |
| MODULE 5:                                                        | Orthographic Projections & Isometric View/Projections                                                                                                                                                                 | 8 Hours                                             |  |  |  |
|                                                                  |                                                                                                                                                                                                                       | 0 110015                                            |  |  |  |
| Projections on                                                   |                                                                                                                                                                                                                       |                                                     |  |  |  |
| 5                                                                | Principal Planes from Front, Top and Sides of the Pictorial view of an Obj                                                                                                                                            | ect, First Angle                                    |  |  |  |
| Projection and                                                   |                                                                                                                                                                                                                       | ect, First Angle                                    |  |  |  |
| Projection and<br>Orthographic V                                 | Principal Planes from Front, Top and Sides of the Pictorial view of an Obj<br>Third Angle Projection system; Full Sectional Orthographic Views,<br>iews into Isometric Projection, View or Drawing; Isometric Scale.  | ect, First Angle<br>Conversion of                   |  |  |  |
| Projection and                                                   | Principal Planes from Front, Top and Sides of the Pictorial view of an Obj<br>Third Angle Projection system; Full Sectional Orthographic Views,                                                                       | ect, First Angle<br>Conversion of                   |  |  |  |
| Projection and<br>Orthographic V<br>MODULE 6:<br>Introduction to | Principal Planes from Front, Top and Sides of the Pictorial view of an Obj<br>Third Angle Projection system; Full Sectional Orthographic Views,<br>iews into Isometric Projection, View or Drawing; Isometric Scale.  | ect, First Angle<br>Conversion of<br><b>1 Hours</b> |  |  |  |

# Books:

# Main Reading:

1. Jolhe, Dhananjay A, Engineering Drawing an introduction to AutoCAD, Tata McGraw-Hill.

# Supplementary Reading:

N.D. Bhatt, Engineering Drawing, Charotar Publishing House Pvt. Ltd.

# **Online Content:**

1. https://nptel.ac.in/courses/112103019

2. https://nptel.ac.in/courses/112104172

| Program: BTech | Year, Semester:1st Year, 2nd Sem |
|----------------|----------------------------------|
|                |                                  |

| <b>Course Title:</b> Career Advancement & Skill<br>Development-II - Communication Skill | Subject Code:TIU-HSM-UEN-S12191 |
|-----------------------------------------------------------------------------------------|---------------------------------|
| Contact Hours/Week: 0-0-2 (L-T-P)                                                       | Credit: 1                       |

Enable the student to:

- 1. Develop fluency in spoken and written English for clear, precise, and confident communication.
- 2. Train in formal writing, reports, proposals, and multimedia presentations.
- 3. Strengthen people skills, time management, and analytical reading for workplace success.

#### **COURSE OUTCOME:**

On completion of the course, the student will be able to:

| CO-1: | <b>Explain</b> fundamental communication principles and <b>assess</b> their relevance in workplace interactions.                                                             | K2 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| CO-2: | <b>Apply</b> grammar and language skills to <b>construct</b> precise and coherent spoken and written communication                                                           | K3 |
| CO-3: | <b>Demonstrate</b> fluency in spoken English through <b>practicing</b> pronunciation drills, <b>developing</b> vocabulary, and <b>engaging</b> in interactive conversations. | K4 |
| CO-4: | <b>Construct</b> well-organized sentences and paragraphs to <b>enhance</b> professional writing.                                                                             | K3 |
| CO-5: | <b>Develop</b> and <b>revise</b> written communication by <b>employing</b> strategies for drafting, editing, and proofreading                                                | К3 |
| CO-6: | Assess and refine communication skills to ensure clarity, precision, and confidence in workplace interactions.                                                               | K4 |

| MODULE 1:                                                                                                                                                                                                                                                            | COMMUNICATION THEORY AND WORKPLACE<br>DYNAMICS                   | 5 Hours          |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------|--|--|--|
| Definition of Communication, Communication Models, Workplace Communication Strategies, Effective<br>Messaging, Organizational Communication, Cultural Communication, Verbal and Non-Verbal Cues,<br>Barriers to Communication, Interpersonal and Group Communication |                                                                  |                  |  |  |  |
| MODULE 2:                                                                                                                                                                                                                                                            | ADVANCED LANGUAGE AND GRAMMAR PROFICIENCY                        | 5 Hours          |  |  |  |
| Morphology and                                                                                                                                                                                                                                                       | Syntax, Sentence Structuring, Advanced Grammar Rules, Tense Modu | ulation, Phrasal |  |  |  |

Verbs, Modifiers, Cohesion and Coherence, Lexical Resource, Semantics, Formal vs. Informal Register

MODULE 3: STRATEGIC SPEAKING AND ORAL PROFICIENCY

5 Hours

Phonetics and Phonology, Pronunciation Refinement, Stress and Intonation, Articulation and Clarity, Persuasive Speaking, Argumentation and Debate, Spontaneous Speaking, Interview Techniques, Business Pitches, Active Listening Strategies

| MODULE 4: | PROFESSIONAL AND TECHNICAL WRITING | 5 Hours |
|-----------|------------------------------------|---------|
|           |                                    | •       |

Writing Process Methodologies, Text Structuring, Precision in Writing, Report Writing, Business Proposals, Formal Correspondence, Executive Summaries, Editing and Proofreading, Technical Documentation, Press Releases, Persuasive and Analytical Writing

| MODULE 5: | APPLIED   | LANGUAGE | AND | COMMUNICATION | 5 Hours |
|-----------|-----------|----------|-----|---------------|---------|
|           | EXERCISES |          |     |               |         |

Lexical Expansion, Idiomatic Expressions, Context-Based Learning, Grammar in Context, Role-Plays and Simulations, Speech Analysis, Storytelling Techniques, Collaborative Writing, Dialogues, Workplace Case Studies

| MODULE 6:                                                                                                                                                                                                                                                       | CORPORATE<br>SKILLS | COMMUNICATION | AND | LEADERSHIP | 5 Hours  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|-----|------------|----------|
| Professional Etiquette, Negotiation Tactics, Conflict Resolution, Crisis Communication, Leadership and<br>Persuasion, Presentation Design, Cross-Cultural Communication, Media and Public Relations, Digital<br>Communication Ethics, High-Stakes Conversations |                     |               |     |            |          |
| TOTAL LECTU                                                                                                                                                                                                                                                     | RES                 |               |     |            | 30 Hours |

#### **Books:**

- 1. Sanjay Kumar, Pushp Lata, "Communication Skills", Oxford University Press, 2015, ISBN: 9780199457069
- M Ashraf Rizvi, "Effective Technical Communication", McGraw Hill Education, 2017, ISBN 9352606108
- 3. Sarah Trenholm and Arthur Jensen, "Interpersonal Communication", Oxford University Press, 2017, ISBN-10: 019064625X, ISBN-13: 978-0190646257
- 4. Claude G. Théoret, "Advanced Communication Skills: 7 Keys to Personal and Professional Growth", Independently Published, 2020, ISBN-10: 1656945618, ISBN-13: 978-1656945615.
- Ronald B. Adler, Lawrence B. Rosenfeld, and Russell F. Proctor II, "Interplay: The Process of Interpersonal Communication", Oxford University Press, 2017, ISBN-10: 019064625X, ISBN-13: 978-0190646257.
- 6. Joseph A. DeVito, "The Interpersonal Communication Book", Pearson, 2015, ISBN-10: 0133753816, ISBN-13: 978-0133753813.

- 7. Mark L. Knapp and John A. Daly, "The SAGE Handbook of Interpersonal Communication", SAGE Publications, 2011, ISBN-10: 1412974747, ISBN-13: 978-1412974745.3.
- 8. John Stewart, "Bridges Not Walls: A Book About Interpersonal Communication", McGraw-Hill Education, 2011, ISBN-10: 0073534315, ISBN-13: 978-0073534312.
- 9. Pamela J. Kalbfleisch, "Interpersonal Communication: Evolving Interpersonal Relationships", Routledge, 2013, ISBN-10: 0805816611, ISBN-13: 978-0805816619.

Deborah Tannen, "Talking from 9 to 5: Women and Men at Work", William Morrow Paperbacks, 2001, ISBN-10: 0060959622, ISBN-13: 978-0060959623.