

4-Year Bachelor of Technology (B.Tech.) Curriculum and Syllabus for Biotechnology

Six Semester

Course Code	Course Title	Contact Hrs. / Week			Credit
		L	Т	Р	
Theory					
TIU-UBT-	CAREER ADVANCEMENT & SKILL				
T300	DEVELOPMENT(BIO-COMPUTING II)	1	0	2	3
TIU-UBT-					
T314	PLANT BIOTECHNOLOGY	3	0	0	3
TIU-UBT-					
T316	MEDICAL BIOTECHNOLOGY	2	1	0	3
TIU-UBT-					
T318	REGULATION OF GENE EXPRESSION	3	0	0	3
TIU-UBT-	BIOMATERIALS AND TISSUE				
T322	ENGINEERING	3	0	0	3
Practical					
TIU-UBT-	BIOPHYSICAL INSTRUMENTATION				
L312	LABORATORY	0	0	3	3
TIU-UBT-					
L314	PLANT BIOLOGY LABORATORY	0	0	3	3
Sessional					
TIU-UBT-					
S398	INDUSTRIAL VISIT	0	0	3	3
TIU-UES-	ENTREPRENEURSHIP SKILL				
S398	DEVELOPMENT	0	0	2	2
Total Credits					26

PLANT BIOTECHNOLOGY

TIU-UBT-T314

L-T-P: 3-0-0

Credits: 3

Unit I: Plant tissue culture and somatic cell genetics: Introduction to plant tissue culture: Tissue culture

Media; Initiation and maintenance of callus and suspension cultures; single cell clones, micropropagation (production of pathogen free plants).

Unit II: Plant regeneration pathways–Organogenesis and Somatic embryogenesis; Endosperm culture and triploid production; Anther and pollen culture, and production of haploid and doubled haploid plants; Protoplast culture and fusion, Somatic hybrids; Organelle transfer and cybrids, hairy root culture and secondary metabolites, cryopreservation and production of synthetic seeds.

Unit III: Gene transfer (Agrobacterium and Ti plasmid and gene gun), Pseudomonas, and transgenic crop development. Marker assisted breeding: Introduction - molecular markers as new efficient tools in breeding, Molecular markers for genome mapping: Principles of genetic linkage, concept of genetic distance, development and choice of mapping populations, linkage map construction.

MEDICAL BIOTECHNOLOGY

TIU-UBT-T316

L-T-P: 3-0-0

Credits: 3

Unit I: An introduction to medical biotechnology: Biotechnology and health care; Basic human physiology; Definition of disease and its types: Genetic disease, Metabolic disease, Immune system malfunction and disease, Hormonal disease, Vitamin and minerals deficiency diseases.

Unit II: Biochemical and Molecular Diagnostics: Different biochemical test using protein and enzyme markers and their interpretation. e.g. Liver function test, kidney function test, blood sugar test, hormone assay etc. Molecular diagnostics: PCR based detection, Microarray, Protein profiling by HPLC, FACS, ELISA. Prenatal diagnosis - Invasive techniques - Amniocentesis, Fetoscopy, Chorionic Villi Sampling (CVS), Non-invasive techniques -Ultrasonography, X-ray, TIFA, maternal serum and fetal cells in maternal blood.

Unit III: Molecular therapy: Gene therapy: DNA based vaccine, RNA based therapeutics, Antisence therapeutics; Enzyme therapy; Hormone therapy; Cytokine therapy; Monoclonal Antibody therapy. An introduction to stem cell therapy and regenerative medicine.

REGULATION OF GENE EXPRESSION

TIU-UBT-T318

L-T-P: 3-0-0

Unit I: Regulation of Prokaryotic Transcription and Translation: Lessons from bacteria; lac, trp, and ara operons; control of lysis and lysogeny in lambda phage; gene regulation in yeast - gal operon.

Unit II: Epigenetic control mechanisms: Histone modifying enzymes and their functions, enhancers, silencers, MNase Digestion.

Unit III: Techniques: Gel retardation assays, reporter gene assays, primer extension, S1 nuclease mapping assays, DNA fingerprinting, qPCR/RT-PCR, Y-2-H, Phage Display, Co-IP, ChIP, Western Blotting, ELISA, Microarray, Flowcytometry, SAGE.

BIOMATERIALS AND TISSUE ENGINEERING

TIU-IBT-T322

L-T-P: 3-0-0

Credits: 3

Module I: History and fundamentals of tissue engineering: Complexity and organization of the vertebrate body, Cell source, Tissue dynamics & cell migration, Stem Cells & TE, Biomaterials for tissue engineering, Biodegradable materials, Tissue engineering examples: Bone & Cartilage Tissue Engineering

Definition of biomaterials – biologically derived materials or materials compatible with biology. Common biomaterials: some proteins, many carbohydrates and some specialized polymers. Collagen (protein in bone and connective tissues): Structure production and its use. Fibroin (protein in silk): Production and its use. Production of these proteins by conventional cloning methods.

Module II: Carbohydrates: Modified carbohydrates actin gas lubricants for biomedical applications; Polydextrose made from bacteria; Carbohydrates modified from enzymes; artificial wood.

Credits: 3

ModuleIII: Biopolymers: Synthesis from a simple biological monomer (hyaluronate polymers); Dextrans (used in chromatography columns); Rubberlike materials produced by bacteria and fungi (Polyhydroxybutyrate PHB), Polycaprolactone (PCL); Production of a copolymer of PHB and PHV(polyhydrovaleric acid), sold as Biopol by fermentation on Alcaligeneseutrophus; Biodegradable polymers

BIOPHYSICAL INSTRUMENTATION LABORATORY

TIU-UBT-L312

L-T-P: 0-0-3

Credits: 3

Explanation of Principle, Parts and Demonstration of the following instruments

- Laminar Air Flow Cabinet: Horizontal and Vertical
- Microscope: Compound Microscope, Fluorescence Microscope, Electron Microscope
- Spectrophotometer: Single Beam, Double Beam, Fluorescence, AAS
- Chromatography:SEC, Affinity Chromatography, IEC, HPLC, HPTLC, GC
- PAGE: SDS-PAGE and Native PAGE and Western Blot
- Protein unfolding by tryptophan fluorescence

PLANT BIOLOGY LABORATORY

TIU-UBT-L314

L-T-P: 0-0-3

Credits: 3

- Explant selection, sterilization and inoculation
- Callus culture from meristimatic tissue and induction of growth, suspension culture
- Anther and Pollen culture
- Estimation of biologically important plant products

BOOK LIST

REGULATION OF GENE EXPRESION

1. Cell and Molecular Biology (1996) Karp, G.

2. Cell Biology (1993) Sadava D. E.

3. Cell and Molecular Biology (1995) Kish V. M. and Kleinsmith L.J.

<u>4. Cell and Molecular Biology :deRobertis</u> <u>and deRobertis</u>

PLANT BIOTECHNOLOGY

1. Plant Tissue culture: Basic and applied (2006) T. Jha and B. Ghosh.

2. Plant Biotechnology: Methods in tissue culture and gene transfer (2006). R. Keshavachandra and K.V. Peter.

3. Plant, cell, tissue and organ culture (2005) Gamborg and Phillips.

4. Plant cell and Tissue culture.(2005). I Vasil and T. Thorpe.

5. Plant tissue culture: Theory and practice- revised editions. Bhojwani and MRajdan

6. Plant cell & tissue culture. (1994). Vasil, I.K. & Thorpe, T.A.

7. Plant tissue culture: Applications and limits. (1990). Bhojwani, S.S.

MEDICAL BIOTECHNOLOGY

1. Diagnostic and Therapeutic Antibodies (Methods in Molecular Medicine by Andrew
J.T.George (Editor), Catherine E. Urch (Editor) Publisher: Humana Press;
edition (2000)2. Molecular Diagnosis of Infectious Diseases (Methods in Molecular Medicine) by

Jochen Decker, U. Reischl Amazon

3. Human Molecular Genetics by T. Strachan, AndrewRead Amazon Sales Rank:

TISSUE ENGINEERING

<u>1. Ratledge C and Kristiansen B, Basic Biotechnology, Cambridge University Press,</u> <u>2ndEdition, 2001</u> <u>2. Doi Y, Microbial Polyesters, VCH Weinheim, 1990</u>